Abstract
In prior work (Chowdhury, M.A.Z., Rice, T.E. & Oehlschlaeger, M.A., Appl. Phys. B 127, 34 (2021)), we found support vector machines (SVM) to be adept at learning patterns from spectral data within a THz frequency range (7.33–11 cm−1) for the purposes of gas-phase speciation. Here, we implement SVM, in a one-versus-rest framework, for the classification of infrared spectra in a broad frequency range (400–4000 cm−1 or 2.5–25 μm) for 34 gas-phase compounds at pressures ranging from 0.1 to 1 atm and for absorber mole fractions from 1 ppm to 1 (pure gases). Within the SVM framework, hyperparameters for the classifier were optimized to choose an optimum kernel for the SVM and acceptable soft margin constant to minimize misclassifications. The framework is tested using cross-validation strategies to determine the dependence of performance on variation in pressure and absorber concentration. Validation was carried out by considering experimental absorption spectra, from the literature, in three random trials, where the combined experimental classification accuracy was greater than 90%. A simulated spectral dataset containing artificial noise was used to further evaluate the SVM classifier in studies where the frequency range and resolution were varied, to better interrogate the capabilities of the SVM framework.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data and code availability
The code and experimental data have been made available on GitHub. GitHub repository: https://github.com/arshadzahangirchowdhury/IR_SVM.
References
M.A.Z. Chowdhury, T.E. Rice, M.A. Oehlschlaeger, Appl. Phys. B: Lasers Opt. 127, 34 (2021)
C.M. Bishop, Machine Learning and Pattern Recoginiton (Springer, New York, NY, 2006)
L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees (Chapman & Hall/CRC, Boca Raton, Florida, 1984).
L. Breiman, Mach. Learn. 45, 5 (2001)
P. Geurts, D. Ernst, L. Wehenkel, Mach. Learn. 63, 3 (2006)
Y. Freund, Inf. Comput. 121, 256 (1995)
Y. Freund, R. Schapire, Journal of Japanese Society for Artificial Intelligence 14, 771 (1999)
L. Peterson, DOI: https://doi.org/10.4249/Scholarpedia.1883 (2009).
T.M. Cover, P.E. Hart, IEEE Trans. Inf. Theory 13, 21 (1967)
A.E. Maxwell, T.A. Warner, F. Fang, Int. J. Remote Sens. 39, 2784 (2018)
M. Pardo and G. Sberveglieri, Sensors and Actuators, B: Chemical 107, 730 (2005).
S. Haykin, Soft Computing and Intelligent Systems 71 (2000).
J. Leonard, M.A. Kramer, Comput. Chem. Eng. 14, 337 (1990)
C. Cortes, V. Vapnik, Mach. Learn. 20, 273 (1995)
N. Chen, W. Lu, J. Yang, and G. Li, Support Vector Machine in Chemistry (WORLD SCIENTIFIC, 2004).
V.N. Vapnik, Statistical Learning Theory (Wiley, New York, NY, 1998)
J. Shawe-Taylor and S. Sun, Academic Press Library in Signal Processing: Volume 1 Signal Processing Theory and Machine Learning 1, 857 (2014).
B. Scholkopf, A.J. Smola, Learning with Kernels (MIT Press, Cambridge, MA, 2001)
N. Cristianini, J. Shawe-Taylor, An Introduction to support vector machines and other kernel-based learning methods (Cambridge University Press, Cambridge, UK, 2013)
L. Wang, Support vector machines: theory and applications (Springer-Verlag, Berlin Heidelberg, 2005)
J. Weston and C. Watkins, Citeseer: Technical Report 23 (1998).
G. Anthony, H. Gregg, and M. Tshilidzi, 28th Asian Conference on Remote Sensing 2007, ACRS 2007 2, 801 (2007).
C. N. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy, 4th ed. (McGraw-Hill Education, 2016).
R. K. Hanson, R. M. Spearrin, and C. S. Goldenstein, Spectroscopy and Optical Diagnostics for Gases (2016).
X. Zhai, A.A.S. Ali, A. Amira, F. Bensaali, IEEE Access 4, 8138 (2016)
P. Peng, X. Zhao, X. Pan, W. Ye, Sensors (Switzerland) 18, 1 (2018)
S. Güney and A. Atasoy, Sensors and Actuators, B: Chemical 166–167, 721 (2012).
J. H. Cho and P. U. Kurup, Sensors and Actuators, B: Chemical 160, 542 (2011).
H. Tian, H. Liu, Y. He, B. Chen, L. Xiao, Y. Fei, G. Wang, H. Yu, C. Chen, J. Food Measurement Characterization 14, 573 (2020)
Y. Luo, W. Ye, X. Zhao, X. Pan, Y. Cao, Sensors (Switzerland) 17, 1 (2017)
J. Mingers, Mach. Learn. 4, 227 (1989)
K. Song, Q. Wang, Q. Liu, H. Zhang, Y. Cheng, Sensors 11, 485 (2011)
L. Zhang, F. Tian, H. Nie, L. Dang, G. Li, Q. Ye, and C. Kadri, Sensors and Actuators, B: Chemical 174, 114 (2012).
A. Tekawade, T.E. Rice, M.A. Oehlschlaeger, M.W. Mansha, K. Wu, M.M. Hella, I. Wilke, Appl. Phys. B: Lasers Opt. 124, 105 (2018)
T.E. Rice, M.A.Z. Chowdhury, M.W. Mansha, M.M. Hella, I. Wilke, M.A. Oehlschlaeger, Appl. Phys. B: Lasers Opt. 126, 152 (2020)
I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, Journal of Quantitative Spectroscopy and Radiative Transfer 203, 3 (2017).
R.V. Kochanov, I.E. Gordon, L.S. Rothman, P. Wcisło, C. Hill, J.S. Wilzewski, J. Quant. Spectrosc. Radiat. Transfer 177, 15 (2016)
P. M. Chu, F. R. Guenther, G. C. Rhoderick, and W. J. Lafferty, The NIST Quantitative Infrared Database (n.d.).
A.L. Smith, The Coblentz Society Desk Book of Infrared Spectra, 2nd edn. (Coblentz Society, Kirkwood, Missouri, 1982)
S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, Gas-Phase Databases for Quantitative Infrared Spectroscopy (2004).
C. Cortes and V. Vapnik, Patent no. US5640492A (1997).
I. Guyon, B. Boser, and V. Vapnik, Advances in Neural Information Processing Systems 147 (1993).
B. E. Boser, I. M. Guyon, and V. N. Vapnik, in Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory (Publ by ACM, 1992), pp. 144–152.
T. Joachims, in Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR ’01 (ACM Press, New York, New York, USA, 2001), pp. 128–136.
O. Chapelle, P. Haffner, V.N. Vapnik, IEEE Trans. Neural Netw. 10, 1055 (1999)
G. Mountrakis, J. Im, C. Ogole, ISPRS J. Photogramm. Remote. Sens. 66, 247 (2011)
E. Gani, C. Manzie, Proceedings of the institution of mechanical engineers. Part D 221, 1183 (2007)
A. Çevik, A. E. KURTOĞLU, M. Bilgehan, M. E. Gülşan, and H. M. Albegmprli, Journal of Civil Engineering and Management 21, 261 (2015).
S. Raghavendra, P.C. Deka, Appl. Soft Comput. J. 19, 372 (2014)
F. Gao, X. Shao, Environ. Sci. Pollut. Res. 28, 21411 (2021)
X. Ma, R. Ge, L. Zhang, Kybernetes 43, 1224 (2014)
F. Elmaz, B. Büyükçakır, Ö. Yücel, A.Y. Mutlu, Fuel 266, 117066 (2020)
T. Kavzoglu, I. Colkesen, Int. J. Appl. Earth Obs. Geoinf. 11, 352 (2009)
G. Van Rossum, Python Reference Manual (Amsterdam, 1995).
C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N.J. Smith, R. Kern, M. Picus, S. Hoyer, M.H. van Kerkwijk, M. Brett, A. Haldane, J.F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, T.E. Oliphant, Nature 585, 357 (2020)
P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, A. Vijaykumar, A. Pietro Bardelli, A. Rothberg, A. Hilboll, A. Kloeckner, A. Scopatz, A. Lee, A. Rokem, C. N. Woods, C. Fulton, C. Masson, C. Häggström, C. Fitzgerald, D. A. Nicholson, D. R. Hagen, D. V. Pasechnik, E. Olivetti, E. Martin, E. Wieser, F. Silva, F. Lenders, F. Wilhelm, G. Young, G. A. Price, G. L. Ingold, G. E. Allen, G. R. Lee, H. Audren, I. Probst, J. P. Dietrich, J. Silterra, J. T. Webber, J. Slavič, J. Nothman, J. Buchner, J. Kulick, J. L. Schönberger, J. V. de Miranda Cardoso, J. Reimer, J. Harrington, J. L. C. Rodríguez, J. Nunez-Iglesias, J. Kuczynski, K. Tritz, M. Thoma, M. Newville, M. Kümmerer, M. Bolingbroke, M. Tartre, M. Pak, N. J. Smith, N. Nowaczyk, N. Shebanov, O. Pavlyk, P. A. Brodtkorb, P. Lee, R. T. McGibbon, R. Feldbauer, S. Lewis, S. Tygier, S. Sievert, S. Vigna, S. Peterson, S. More, T. Pudlik, T. Oshima, T. J. Pingel, T. P. Robitaille, T. Spura, T. R. Jones, T. Cera, T. Leslie, T. Zito, T. Krauss, U. Upadhyay, Y. O. Halchenko, and Y. Vázquez-Baeza, Nature Methods 17, 261 (2020).
W. Mckinney, in (Proc. of The 9th Python in Science Conf. (SCIPY 2010), 2010).
J.D. Hunter, Comput. Sci. Eng. 9, 90 (2007)
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, É. Duchesnay, J. Mach. Learn. Res. 12, 2825 (2011)
C.C. Chang, C.J. Lin, ACM Trans. Intell. Syst. Technol. 2, 27 (2011)
S.S. Keerthi, C.J. Lin, Neural Comput. 15, 1667 (2003)
C. Hsu, C. Chang, and C. Lin, National Taiwan University 1396 (2003).
Acknowledgements
This work was supported by the National Science Foundation under Grant CBET-1851291.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Chowdhury, M.A.Z., Rice, T.E. & Oehlschlaeger, M.A. A support vector machines framework for identification of infrared spectra. Appl. Phys. B 128, 161 (2022). https://doi.org/10.1007/s00340-022-07879-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00340-022-07879-8