Skip to main content
Log in

A support vector machines framework for identification of infrared spectra

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In prior work (Chowdhury, M.A.Z., Rice, T.E. & Oehlschlaeger, M.A., Appl. Phys. B 127, 34 (2021)), we found support vector machines (SVM) to be adept at learning patterns from spectral data within a THz frequency range (7.33–11 cm−1) for the purposes of gas-phase speciation. Here, we implement SVM, in a one-versus-rest framework, for the classification of infrared spectra in a broad frequency range (400–4000 cm−1 or 2.5–25 μm) for 34 gas-phase compounds at pressures ranging from 0.1 to 1 atm and for absorber mole fractions from 1 ppm to 1 (pure gases). Within the SVM framework, hyperparameters for the classifier were optimized to choose an optimum kernel for the SVM and acceptable soft margin constant to minimize misclassifications. The framework is tested using cross-validation strategies to determine the dependence of performance on variation in pressure and absorber concentration. Validation was carried out by considering experimental absorption spectra, from the literature, in three random trials, where the combined experimental classification accuracy was greater than 90%. A simulated spectral dataset containing artificial noise was used to further evaluate the SVM classifier in studies where the frequency range and resolution were varied, to better interrogate the capabilities of the SVM framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data and code availability

The code and experimental data have been made available on GitHub. GitHub repository: https://github.com/arshadzahangirchowdhury/IR_SVM.

References

  1. M.A.Z. Chowdhury, T.E. Rice, M.A. Oehlschlaeger, Appl. Phys. B: Lasers Opt. 127, 34 (2021)

    Article  ADS  Google Scholar 

  2. C.M. Bishop, Machine Learning and Pattern Recoginiton (Springer, New York, NY, 2006)

    Google Scholar 

  3. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees (Chapman & Hall/CRC, Boca Raton, Florida, 1984).

  4. L. Breiman, Mach. Learn. 45, 5 (2001)

    Article  Google Scholar 

  5. P. Geurts, D. Ernst, L. Wehenkel, Mach. Learn. 63, 3 (2006)

    Article  Google Scholar 

  6. Y. Freund, Inf. Comput. 121, 256 (1995)

    Article  Google Scholar 

  7. Y. Freund, R. Schapire, Journal of Japanese Society for Artificial Intelligence 14, 771 (1999)

    Google Scholar 

  8. L. Peterson, DOI: https://doi.org/10.4249/Scholarpedia.1883 (2009).

  9. T.M. Cover, P.E. Hart, IEEE Trans. Inf. Theory 13, 21 (1967)

    Article  Google Scholar 

  10. A.E. Maxwell, T.A. Warner, F. Fang, Int. J. Remote Sens. 39, 2784 (2018)

    Article  Google Scholar 

  11. M. Pardo and G. Sberveglieri, Sensors and Actuators, B: Chemical 107, 730 (2005).

  12. S. Haykin, Soft Computing and Intelligent Systems 71 (2000).

  13. J. Leonard, M.A. Kramer, Comput. Chem. Eng. 14, 337 (1990)

    Article  Google Scholar 

  14. C. Cortes, V. Vapnik, Mach. Learn. 20, 273 (1995)

    Google Scholar 

  15. N. Chen, W. Lu, J. Yang, and G. Li, Support Vector Machine in Chemistry (WORLD SCIENTIFIC, 2004).

  16. V.N. Vapnik, Statistical Learning Theory (Wiley, New York, NY, 1998)

    MATH  Google Scholar 

  17. J. Shawe-Taylor and S. Sun, Academic Press Library in Signal Processing: Volume 1 Signal Processing Theory and Machine Learning 1, 857 (2014).

  18. B. Scholkopf, A.J. Smola, Learning with Kernels (MIT Press, Cambridge, MA, 2001)

    MATH  Google Scholar 

  19. N. Cristianini, J. Shawe-Taylor, An Introduction to support vector machines and other kernel-based learning methods (Cambridge University Press, Cambridge, UK, 2013)

    MATH  Google Scholar 

  20. L. Wang, Support vector machines: theory and applications (Springer-Verlag, Berlin Heidelberg, 2005)

    Book  Google Scholar 

  21. J. Weston and C. Watkins, Citeseer: Technical Report 23 (1998).

  22. G. Anthony, H. Gregg, and M. Tshilidzi, 28th Asian Conference on Remote Sensing 2007, ACRS 2007 2, 801 (2007).

  23. C. N. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy, 4th ed. (McGraw-Hill Education, 2016).

  24. R. K. Hanson, R. M. Spearrin, and C. S. Goldenstein, Spectroscopy and Optical Diagnostics for Gases (2016).

  25. X. Zhai, A.A.S. Ali, A. Amira, F. Bensaali, IEEE Access 4, 8138 (2016)

    Article  Google Scholar 

  26. P. Peng, X. Zhao, X. Pan, W. Ye, Sensors (Switzerland) 18, 1 (2018)

    Google Scholar 

  27. S. Güney and A. Atasoy, Sensors and Actuators, B: Chemical 166167, 721 (2012).

  28. J. H. Cho and P. U. Kurup, Sensors and Actuators, B: Chemical 160, 542 (2011).

  29. H. Tian, H. Liu, Y. He, B. Chen, L. Xiao, Y. Fei, G. Wang, H. Yu, C. Chen, J. Food Measurement Characterization 14, 573 (2020)

    Article  Google Scholar 

  30. Y. Luo, W. Ye, X. Zhao, X. Pan, Y. Cao, Sensors (Switzerland) 17, 1 (2017)

    Google Scholar 

  31. J. Mingers, Mach. Learn. 4, 227 (1989)

    Article  Google Scholar 

  32. K. Song, Q. Wang, Q. Liu, H. Zhang, Y. Cheng, Sensors 11, 485 (2011)

    Article  ADS  Google Scholar 

  33. L. Zhang, F. Tian, H. Nie, L. Dang, G. Li, Q. Ye, and C. Kadri, Sensors and Actuators, B: Chemical 174, 114 (2012).

  34. A. Tekawade, T.E. Rice, M.A. Oehlschlaeger, M.W. Mansha, K. Wu, M.M. Hella, I. Wilke, Appl. Phys. B: Lasers Opt. 124, 105 (2018)

    Article  ADS  Google Scholar 

  35. T.E. Rice, M.A.Z. Chowdhury, M.W. Mansha, M.M. Hella, I. Wilke, M.A. Oehlschlaeger, Appl. Phys. B: Lasers Opt. 126, 152 (2020)

    Article  ADS  Google Scholar 

  36. I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, Journal of Quantitative Spectroscopy and Radiative Transfer 203, 3 (2017).

  37. R.V. Kochanov, I.E. Gordon, L.S. Rothman, P. Wcisło, C. Hill, J.S. Wilzewski, J. Quant. Spectrosc. Radiat. Transfer 177, 15 (2016)

    Article  ADS  Google Scholar 

  38. P. M. Chu, F. R. Guenther, G. C. Rhoderick, and W. J. Lafferty, The NIST Quantitative Infrared Database (n.d.).

  39. A.L. Smith, The Coblentz Society Desk Book of Infrared Spectra, 2nd edn. (Coblentz Society, Kirkwood, Missouri, 1982)

    Google Scholar 

  40. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, Gas-Phase Databases for Quantitative Infrared Spectroscopy (2004).

  41. C. Cortes and V. Vapnik, Patent no. US5640492A (1997).

  42. I. Guyon, B. Boser, and V. Vapnik, Advances in Neural Information Processing Systems 147 (1993).

  43. B. E. Boser, I. M. Guyon, and V. N. Vapnik, in Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory (Publ by ACM, 1992), pp. 144–152.

  44. T. Joachims, in Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR ’01 (ACM Press, New York, New York, USA, 2001), pp. 128–136.

  45. O. Chapelle, P. Haffner, V.N. Vapnik, IEEE Trans. Neural Netw. 10, 1055 (1999)

    Article  Google Scholar 

  46. G. Mountrakis, J. Im, C. Ogole, ISPRS J. Photogramm. Remote. Sens. 66, 247 (2011)

    Article  ADS  Google Scholar 

  47. E. Gani, C. Manzie, Proceedings of the institution of mechanical engineers. Part D 221, 1183 (2007)

    Google Scholar 

  48. A. Çevik, A. E. KURTOĞLU, M. Bilgehan, M. E. Gülşan, and H. M. Albegmprli, Journal of Civil Engineering and Management 21, 261 (2015).

  49. S. Raghavendra, P.C. Deka, Appl. Soft Comput. J. 19, 372 (2014)

    Article  Google Scholar 

  50. F. Gao, X. Shao, Environ. Sci. Pollut. Res. 28, 21411 (2021)

    Article  Google Scholar 

  51. X. Ma, R. Ge, L. Zhang, Kybernetes 43, 1224 (2014)

    Article  Google Scholar 

  52. F. Elmaz, B. Büyükçakır, Ö. Yücel, A.Y. Mutlu, Fuel 266, 117066 (2020)

    Article  Google Scholar 

  53. T. Kavzoglu, I. Colkesen, Int. J. Appl. Earth Obs. Geoinf. 11, 352 (2009)

    ADS  Google Scholar 

  54. G. Van Rossum, Python Reference Manual (Amsterdam, 1995).

  55. C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N.J. Smith, R. Kern, M. Picus, S. Hoyer, M.H. van Kerkwijk, M. Brett, A. Haldane, J.F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, T.E. Oliphant, Nature 585, 357 (2020)

    Article  ADS  Google Scholar 

  56. P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, A. Vijaykumar, A. Pietro Bardelli, A. Rothberg, A. Hilboll, A. Kloeckner, A. Scopatz, A. Lee, A. Rokem, C. N. Woods, C. Fulton, C. Masson, C. Häggström, C. Fitzgerald, D. A. Nicholson, D. R. Hagen, D. V. Pasechnik, E. Olivetti, E. Martin, E. Wieser, F. Silva, F. Lenders, F. Wilhelm, G. Young, G. A. Price, G. L. Ingold, G. E. Allen, G. R. Lee, H. Audren, I. Probst, J. P. Dietrich, J. Silterra, J. T. Webber, J. Slavič, J. Nothman, J. Buchner, J. Kulick, J. L. Schönberger, J. V. de Miranda Cardoso, J. Reimer, J. Harrington, J. L. C. Rodríguez, J. Nunez-Iglesias, J. Kuczynski, K. Tritz, M. Thoma, M. Newville, M. Kümmerer, M. Bolingbroke, M. Tartre, M. Pak, N. J. Smith, N. Nowaczyk, N. Shebanov, O. Pavlyk, P. A. Brodtkorb, P. Lee, R. T. McGibbon, R. Feldbauer, S. Lewis, S. Tygier, S. Sievert, S. Vigna, S. Peterson, S. More, T. Pudlik, T. Oshima, T. J. Pingel, T. P. Robitaille, T. Spura, T. R. Jones, T. Cera, T. Leslie, T. Zito, T. Krauss, U. Upadhyay, Y. O. Halchenko, and Y. Vázquez-Baeza, Nature Methods 17, 261 (2020).

  57. W. Mckinney, in (Proc. of The 9th Python in Science Conf. (SCIPY 2010), 2010).

  58. J.D. Hunter, Comput. Sci. Eng. 9, 90 (2007)

    Article  Google Scholar 

  59. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, É. Duchesnay, J. Mach. Learn. Res. 12, 2825 (2011)

    MathSciNet  Google Scholar 

  60. C.C. Chang, C.J. Lin, ACM Trans. Intell. Syst. Technol. 2, 27 (2011)

    Article  Google Scholar 

  61. S.S. Keerthi, C.J. Lin, Neural Comput. 15, 1667 (2003)

    Article  Google Scholar 

  62. C. Hsu, C. Chang, and C. Lin, National Taiwan University 1396 (2003).

Download references

Acknowledgements

This work was supported by the National Science Foundation under Grant CBET-1851291.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Arshad Zahangir Chowdhury.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1744 KB)

Supplementary file2 (DOCX 2218 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, M.A.Z., Rice, T.E. & Oehlschlaeger, M.A. A support vector machines framework for identification of infrared spectra. Appl. Phys. B 128, 161 (2022). https://doi.org/10.1007/s00340-022-07879-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07879-8

Navigation