Skip to main content
Log in

Omnidirectional photonic band gap based on nonlinear periodic and quasi-periodic photonic crystals

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, we report the effect of the nonlinearity independently of the incident angle \(\theta _{0}\) on the reflection properties of 1D periodic and quasi-periodic photonic crystals of type H(LH)\({}^{15\ }\)and “F\({}_{6}\)F\({}_{6}\)F\({}_{4}\)”, respectively. Which is composed of linear (H layers) and nonlinear (L layers) materials. The linear and nonlinear reflection spectra for both TE and TM polarizations are graphically illustrated using a numerical approach based on the Transfer Matrix Method (TMM). It is shown that the position and the width of the PBG can be controlled by the variation of the electric field intensity (Kerr effect), independently of \(\theta _{0}\). Those systems exhibit an Omnidirectional Photonic Band Gap OPBG for any polarization for a common limit \(\theta _{0} \in \left[ 0,64{}^\circ \right]\). The most suitable system to have a larger OPBG is the system “F\({}_{6}\)F\({}_{6}\)F\({}_{4}\)” using ZnSe as H layers and Poly-9BCMU as L layers. Our nonlinear models are suitable to be used as good reflectors as well in designing nonlinear optical devices as optical limiting and all-optical switching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. J. Zaghdoudi, Z. Baraket, M. Kanzari, J. Supercond. Novel Magn. 32(8), 2605 (2019)

    Article  Google Scholar 

  2. Y. Trabelsi, N.B. Ali, M. Kanzari, Microelectron. Eng. 213, 41 (2019)

    Article  Google Scholar 

  3. N. Ben Ali, W. Yusoff, Y. Trabelsi, M. Kanzari, Opt. Appl. 48(1) (2018)

  4. O. Soltani, J. Zaghdoudi, M. Kanzari, Photon. Nanostruct. Fundam. Appl. 38, 100744 (2020)

    Article  Google Scholar 

  5. S. Guo, C. Hu, H. Zhang, JOSA B 37(9), 2678 (2020)

    Article  ADS  Google Scholar 

  6. O. Soltani, S. Francoeur, Z. Baraket, M. Kanzari, Opt. Mater. 111, 110690 (2021)

    Article  Google Scholar 

  7. T. Gahef, Y. Bouazzi, M. Kanzari, Opt. Quant. Electron. 49(3), 1 (2017)

    Article  Google Scholar 

  8. F. Biancalana, J. Appl. Phys. 104(9), 093113 (2008)

    Article  ADS  Google Scholar 

  9. B.F. Wan, Z.W. Zhou, Y. Xu, H.F. Zhang, IEEE Sens. J. 21(1), 331 (2020)

    Article  ADS  Google Scholar 

  10. S. Zirak-Gharamaleki, Opt. Commun. 284(2), 579 (2011)

    Article  ADS  Google Scholar 

  11. A. Banerjee, Optik 126(23), 3728 (2015)

    Article  ADS  Google Scholar 

  12. Y. Zhao, Y. Zhang, X. Guo, M. Liu, H. Chen, S. Liu, H. Zhang, J. Appl. Phys. 122(22), 223108 (2017)

    Article  ADS  Google Scholar 

  13. B. Chavez-Castillo, J. Pérez-Huerta, J. Madrigal-Melchor, S. Amador-Alvarado, I. Sustaita-Torres, V. Agarwal, D. Ariza-Flores, J. Appl. Phys. 127(20), 203106 (2020)

    Article  ADS  Google Scholar 

  14. Z. Naderi Dehnavi, H. Ranjbar Askari, M. Malekshahi, D. Dorranian, Phys. Plasma 24(9), 093517 (2017)

    Article  ADS  Google Scholar 

  15. F. Xue, S.B. Liu, H.F. Zhang, X.K. Kong, Y.D. Wen, L.L. Wang, S. Qian, Opt. Quant. Electron. 49(1), 1 (2017)

    Article  Google Scholar 

  16. B.K. Singh, M.K. Chaudhari, P.C. Pandey, J. Lightwave Technol. 34(10), 2431 (2016)

    Article  ADS  Google Scholar 

  17. N.B. Ali, H. Alsaif, Y. Trabelsi, Y. Bouazzi, M.B. Rabeh, Appl. Nanosci. 11(5), 1759 (2021)

    Article  ADS  Google Scholar 

  18. R.W. Boyd, Nonlinear Optics (Academic Press, San Diego, 2019)

    Google Scholar 

  19. A. Kumar, V. Kumar, B. Suthar, K.S. Singh, S. Ojha, Optik 125(1), 393 (2014)

    Article  ADS  Google Scholar 

  20. O. Habli, J. Zaghdoudi, M. Kanzari, Progr. Electromagn. Res. M 100, 69 (2021)

    Article  Google Scholar 

  21. M. Fujii, A. Maitra, C. Poulton, J. Leuthold, W. Freude, Opt. Express 14(26), 12782 (2006)

    Article  ADS  Google Scholar 

  22. M.H. Teimourpour, Advances in Optical Materials (Optical Society of America, Washington, 2011), p. AIThB12

    Book  Google Scholar 

  23. W. Shi, M. Shi, X. Ma, Emerg. Mater. Res. 8(2), 123 (2019)

    Article  MathSciNet  Google Scholar 

  24. R. Zohrabi, A. Namdar, J. Opt. Commun. 40(3), 187 (2019)

    Article  Google Scholar 

  25. X. Chen, F. Xue, S. Wang, B. Tang, Laser Optoelectr. Progr. 50(1), 011901

  26. J. Zaghdoudi, M. Kanzari, Optik 160, 189 (2018)

    Article  ADS  Google Scholar 

  27. O. Habli, Y. Bouazzi, M. Kanzari, Progr. Electromagn. Res. C 92, 251 (2019)

    Article  Google Scholar 

  28. Y. Trabelsi, N.B. Ali, A.H. Aly, M. Kanzari, Physica C (Amsterdam, Neth.) 576, 1353706 (2020)

    Article  ADS  Google Scholar 

  29. K. Jamshidi-Ghaleha, Z. Safarib, R. Tanavarc, Acta Phys. Pol. A 123, 212 (2013)

    Article  ADS  Google Scholar 

  30. A. Namdar, F. Ebadi-Garjan, Acta Phys. Pol. A 123(1), 45 (2013)

    Article  ADS  Google Scholar 

  31. M. Scalora, J.P. Dowling, C.M. Bowden, M.J. Bloemer, Phys. Rev. Lett. 73(10), 1368 (1994)

    Article  ADS  Google Scholar 

  32. I. Maksymov, L. Marsal, J. Pallares, Opt. Commun. 239(1–3), 213 (2004)

    Article  ADS  Google Scholar 

  33. S. Joseph, A.K. Hafiz, Physics of Semiconductor Devices (Springer, New York, 2014), pp. 277–279

    Book  Google Scholar 

  34. H.A.M. Al-Zahrani, Sciences 8(2), 690 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oumayma Habli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habli, O., Zaghdoudi, J. & Kanzari, M. Omnidirectional photonic band gap based on nonlinear periodic and quasi-periodic photonic crystals. Appl. Phys. B 128, 118 (2022). https://doi.org/10.1007/s00340-022-07845-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07845-4

Keywords

Navigation