Skip to main content
Log in

The effect of solution temperature on the quantitative analysis of laser-induced breakdown spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The relationship between sample temperature and the plasma spectrum is of great significance to the water quality monitoring using the laser-induced breakdown spectroscopy (LIBS). In this work, we study the effect of temperature variation on the plasma spectrum in CaCl2 solution for on-line analysis using the LIBS. The effects of sample solution temperature from 25 to 80 °C on the emission spectral intensity, the signal-to-background ratio (SBR) and quantitative analysis of the laser-induced plasma are studied. When the temperature rises from 25 to 70 °C, the emission spectral intensity and the SBR of the laser plasma increase or get enhanced with the increase of temperature. However, when the temperature further increases from 70 to 80 °C, the spectral intensity and the SBR begin to decrease. The enhancement rate reaches the maximum at 70 °C. In quantitative analysis, the fitting curve and the root mean square errors (RMSE) increase with the increase of the sample temperature. The relevant parameters peak at 70 °C. At this optimal temperature, the correlation coefficients of Ca II 393.366 and Ca II 396.847 nm are found to be 0.9988 and 0.9953, respectively, with the RMSE decreased to 0.16 and 0.27%, respectively, and the lowest detection limits are 27.99 and 28.10 μg ml−1, respectively. This study demonstrates that the preheating to the samples can effectively improve the LIBS ability for on-line analysis and detection of water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Chandrajith, C.B. Dissanayake, T. Ariyarathna, H.M. Herath, J.P. Padmasiri, Sci. Total. Environ. 409(4), 671–675 (2011)

    Article  ADS  Google Scholar 

  2. H.M.S. Wasana, D. Aluthpatabendi, W.M.T.D. Kularatne, P. Wijekoon, R. Weerasooriya, J. Bandara, Environ. Geochem. Health. 38(1), 157–168 (2016)

    Article  Google Scholar 

  3. M.C. Yappert, D.B. Donald, J. Chem. Educ. 74(12), 1422 (1997)

    Article  Google Scholar 

  4. M.E. Mahmoud, G.M. El Zokm, A.E.M. Farag, M.S. Abdelwahab, Environ. Sci. Pollut. Res. 24(22), 18218–18228 (2017)

    Article  Google Scholar 

  5. H. Zhang, W. Wu, Anal. Sci. 34(3), 305–310 (2018)

    Article  Google Scholar 

  6. D.A. Cremers, Appl. Spectrosc. 41(4), 572–579 (1987)

    Article  ADS  Google Scholar 

  7. M.L. Shah, A.K. Pulhani, G.P. Gupta, B.M. Suri, Appl. Opt. 51(20), 4612–4621 (2012)

    Article  ADS  Google Scholar 

  8. A.K. Knight, N.L. Scherbarth, D.A. Cremers, M.J. Ferris, Appl. Spectrosc. 54(3), 331–340 (2000)

    Article  ADS  Google Scholar 

  9. B. Sallé, D.A. Cremers, S. Maurice, Spectrochim. Acta, Part B. 60(4), 479–490 (2005)

    Article  ADS  Google Scholar 

  10. G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, Spectrochim. Acta, Part B. 59(12), 1907–1917 (2004)

    Article  ADS  Google Scholar 

  11. Z.Q. Hao, C.M. Li, M. Shen, X.Y. Yang, K.H. Li, L.B. Guo, X.Y. Li, Y.F. Lu, X.Y. Zeng, Opt. Express. 23(6), 7795–7801 (2015)

    Article  ADS  Google Scholar 

  12. T. Zhang, L. Liang, K. Wang et al., J. Anal. At. Spectrom. 29, 2323–2329 (2014)

    Article  Google Scholar 

  13. F.C. DeLucia, J.L. Gottfried, C.A. Munson et al., Appl. Opt. 47(31), G112–G121 (2008)

    Article  Google Scholar 

  14. A.W. Miziolek, V. Palleschi, I. Schechter. Cambridge University Press, Cambridge (2006). https://doi.org/10.1007/s00216-011-5073-5

  15. A. Kumar, F.Y. Yueh, J.P. Singh, Appl. Opt. 42(30), 6047 (2003)

    Article  ADS  Google Scholar 

  16. L.M. Wang, Y.J. Zhang, Y. He, K. You, J.G. Liu, W.Q. Liu, Spectrom. Spectr. Anal. 32(4), 910–914 (2012)

    Google Scholar 

  17. K. Skočovská, J. Novotný, D. Prochazka, P. Pořízka, K. Novotný, J. Kaiser, Rev. Sci. Instrum. 87(4), 233 (2016)

    Article  Google Scholar 

  18. O. Samek, D.C.S. Beddows, J. Kaiser, S.V. Kukhlevsky, M. Liska, H.H. Telle, A.J. Whitehouse, Opt. Eng. 39(8), 2248–2262 (2000)

    Article  ADS  Google Scholar 

  19. P. Yaroshchyk, R.J.S. Morrison, D. Body, B.L. Chadwick, Spectrochim. Acta, Part B 60, 986 (2005)

    Article  ADS  Google Scholar 

  20. H. Sobral, R. Sanginés, A. Trujillo-Vázquez, Spectrochim. Acta, Part B 78, 62–66 (2012)

    Article  ADS  Google Scholar 

  21. A. Pichahchy, D. Cremers, M. Ferris, Spectrochim. Acta, Part B. 52, 25 (1997)

    Article  ADS  Google Scholar 

  22. B. Charfi, M.A. Harith, Spectrochim. Acta, Part. B. 57, 1141 (2002)

    Article  ADS  Google Scholar 

  23. A. Casavola, A. De Giacomo, M. Dell’Aglio, F. Taccogna, G. Colonna, O. De Pascale, S. Longo, Spectrochim. Acta, Part B. 60, 975 (2005)

    Article  ADS  Google Scholar 

  24. R. Knopp, F.J. Scherbaum, J.J. Kim, Fresenius. J. Anal. Chem. 355, 16–20 (1996)

    Article  Google Scholar 

  25. S. Kumar, J. Park, S.H. Nam et al., Plasma Sci. Technol. 22(7), 074009 (2020)

    Article  ADS  Google Scholar 

  26. L. Flamigni, J. Koch, D. Gunther, J. Anal. At. Spectrom. 29(2), 280–286 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This paper was supported by National Natural Science Foundation of China (NSFC, No. 51374040), Department of Science and Technology of Jilin Province of China (Grant No. 20200403008SF) and Education Department of Jilin Province of China (Grant No. JJKH20210737KJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yutao Huang or Xiaomei Lin.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Yang, J., Gao, X. et al. The effect of solution temperature on the quantitative analysis of laser-induced breakdown spectroscopy. Appl. Phys. B 128, 127 (2022). https://doi.org/10.1007/s00340-022-07843-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07843-6

Navigation