Skip to main content

Advertisement

Log in

Fission free high-energy mode-locked soliton generation in an all-polarization-maintaining fiber laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

By employing a nonlinear amplifying loop mirror into an all-polarization-maintaining fiber laser, the effective evolution length of high-energy pulses is shorter than the soliton fission length. A stable self-starting mode-locked soliton fiber laser delivers 1.19 nJ high-energy soliton free of soliton fission, which is confirmed both in spectral and temporal domain measurements. A seventh-order soliton with an estimated energy of 4.47 nJ is able to stably oscillate in the laser resonator. Two segments symmetrically placed gain fibers can be pumped independently, providing a large gain with a large power tuning range. In general, the results obtained here can be used for other wavelengths, and, in principle, can circumvent the limitation on the soliton laser output energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M.E. Fermann, I. Hartl, Ultrafast fibre lasers. Nat. Photonics 7, 868–874 (2013)

    Article  ADS  Google Scholar 

  2. G. Chang, Z. Wei, Ultrafast fiber lasers: an expanding versatile toolbox. Iscience 23, 101101 (2020)

    Article  ADS  Google Scholar 

  3. L.F. Mollenauer, R.H. Stolen, The soliton laser. Opt. Lett. 9, 13–15 (1984)

    Article  ADS  Google Scholar 

  4. T. Brabec, C.H. Spielmann, F. Krausz, Mode locking in solitary lasers. Opt. Lett. 16, 1961–1963 (1991)

    Article  ADS  Google Scholar 

  5. A. Weiner, Ultrafast Optics (John Wiley & Sons, 2011)

    Google Scholar 

  6. R.W. Boyd, Nonlinear Optics (Academic Press, 2020)

    Google Scholar 

  7. P. Rüdiger, Encyclopedia of Laser Physics and Technology (Wiley, VCH, Berlin, 2008)

    Google Scholar 

  8. S. Schulz, I. Grguraš, C. Behrens, H. Bromberger, J.T. Costello, M.K. Czwalinna, M. Felber, M.C. Hoffmann, M. Ilchen, H.Y. Liu et al., Femtosecond all-optical synchronization of an X-ray free-electron laser. Nat. Commun. 6, 1–11 (2015)

    Article  Google Scholar 

  9. M. Xin, K. Şafak, M.Y. Peng, A. Kalaydzhyan, W.-T. Wang, O.D. Mücke, F.X. Kärtner, Attosecond precision multi-kilometer laser-microwave network. Light Sci. Appl. 6, e16187–e16187 (2017)

    Article  Google Scholar 

  10. F. Riehle, Optical clock networks. Nat. Photon. 11, 25–31 (2017)

    Article  ADS  Google Scholar 

  11. F. Ihsan, D. Louis, B. Severine, V. Matthieu, B. Jerome, L. Christian, L. Eric, D. Eric, B. Arnaud, J.-C. Chanteloup, Coherent beam combining of 61 femtosecond fiber amplifiers. Opt. Express 28, 20152–20161 (2020)

    Article  Google Scholar 

  12. T. Cao, J. Yan, Y. Chen, L. Huang, Z. Guo, S. Liu, K. Hu, A. Ridsdale, A.V. Sokolov, J. Peng, Hybrid CARS spectroscopy based on a high-repetition-rate all-PM-fiber laser source. Appl. Phys. Lett. 117, 081103 (2020)

    Article  ADS  Google Scholar 

  13. C. Kong, C. Pilger, H. Hachmeister, X. Wei, T.H. Cheung, C.S.W. Lai, N.P. Lee, K.K. Tsia, K.K.Y. Wong, T. Huser, High-contrast, fast chemical imaging by coherent Raman scattering using a self-synchronized two-colour fibre laser. Light Sci. Appl. 9, 1–12 (2020)

    Article  Google Scholar 

  14. S.M.J. Kelly, Characteristic sideband instability of periodically amplified average soliton. Electron. Lett. 28, 806–807 (1992)

    Article  ADS  Google Scholar 

  15. F.Ö. Ilday, J.R. Buckley, W.G. Clark, F.W. Wise, Self-similar evolution of parabolic pulses in a laser. Phys. Rev. Lett. 92, 213902 (2004)

    Article  ADS  Google Scholar 

  16. Z. Wang, L. Zhan, X. Fang, C. Gao, K. Qian, Generation of Sub-60 fs Similaritons at 1.6 ÍmFrom an All-Fiber Er-Doped Laser. J. Lightwave Technol. 34, 4128–4134 (2016)

    Article  ADS  Google Scholar 

  17. H.-L. Chen, H. Zhang, H.-W. Zhang, X. Zhao, Y.-T. Xu, Y.-G. Zou, X.-H. Ma, L. Jin, 1.6-\(\mu\)m-wavelength dissipative solitons mode-locked fiber laser based on the optimization of passive fibers distribution. Appl. Opt. 57, 7070–7075 (2018)

    Article  ADS  Google Scholar 

  18. D. Duan, J. Wang, W. Yang, J. Ma, Q. Mao, Approach to high pulse energy emission of the self-starting mode-locked figure-9 fiber laser. Opt. Express 28, 33603–33613 (2020)

    Article  ADS  Google Scholar 

  19. Jintao Wang, Zike Jiang, Hao Chen, Jiarong Li, Jinde Yin, Jinzhang Wang, Tingchao He, Peiguang Yan, Shuangchen Ruan, High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe 2 saturable absorber. Photon. Res. 6, 535–541 (2018)

    Article  Google Scholar 

  20. M. Giunta, J. Yu, M. Lessing, M. Fischer, M. Lezius, X. Xie, G. Santarelli, Y. Le Coq, R. Holzwarth, Compact and ultrastable photonic microwave oscillator. Opt. Lett. 45, 1140–1143 (2020)

    Article  ADS  Google Scholar 

  21. J. Satsuma, N.B. Yajima, Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media. Prog. Theoret. Phys. Suppl. 55, 284–306 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  22. J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber. Rev. Modern Phys. 78, 1135 (2006)

    Article  ADS  Google Scholar 

  23. D. Anderson, M. Desaix, M. Lisak, M.L. Quiroga-Teixeiro, Wave breaking in nonlinear-optical fibers. JOSA B 9, 1358–1361 (1992)

    Article  ADS  Google Scholar 

Download references

Funding

National Key Research and Development Program of China (2016YFB1102404); The Scientific Research Foundation of National Institute of Metrology,China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahui Peng.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Chen, Y., Liu, S. et al. Fission free high-energy mode-locked soliton generation in an all-polarization-maintaining fiber laser. Appl. Phys. B 128, 119 (2022). https://doi.org/10.1007/s00340-022-07842-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07842-7

Navigation