Skip to main content

Advertisement

Log in

Derivation of expression of time-averaged stored energy density of electromagnetic waves

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

There exist several nonequivalent expressions of time-averaged stored energy density (TASED) for electromagnetic waves. Correspondingly, different value, even different sign, of TASED may be predicted theoretically. In this work, we demonstrate that the stored energy of an electromagnetic wave oscillates periodically; according to the law of conservation of energy and causality, the stored energy is stored first and then released subsequently, thus TASED is positive definitive. On this basis, TASED expression of a linearly polarized electromagnetic wave traveling in a linear isotropic medium is obtained by selecting a proper starting time to calculate the time averaged value of the stored energy density. Our work provides a clear physical image and physical meaning for TASED, and may be helpful to further address the related issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. L.D. Landau, E.M. Lifschitz, Electrodynamics of continuous media (Pergamon Press, Oxford, 1984)

    Google Scholar 

  2. K.Q. Zhang, Electromagnetic theory for electromagnetic microwaves and optoelectronics (Springer, Berlin, 1998)

    Book  Google Scholar 

  3. Z. Yin, Electrodynamics (Nanjing University Press, Nanjing, 1999). (in Chinese)

    Google Scholar 

  4. D.K. Cheng, Field and wave electromagnetics (Tsinghua University Press, Tsinghua, 2007)

    Google Scholar 

  5. D.J. White, P.L. Overfelt.: “Poynting’s theorem and their relationship to antenna power, Q, and bandwidth,” NAWCWPNS Technical Publication 8419, (1999)

  6. J.M. Zhao, Z.M. Zhang, Electromagnetic energy storage and power dissipation in nanostructures. J. Quant Spectrosc. Radiat. Transfer 151, 49 (2015)

    Article  ADS  Google Scholar 

  7. R.W. Ziolkowski, Superluminal transmission of information through an electromagnetic metamaterial. Phys. Rev. E 63, 046604 (2001)

    Article  ADS  Google Scholar 

  8. C. Wang, Self-consistent theory for a plane wave in a moving medium and light-momentum criterion. Can. J. Phys. 93, 1510 (2015)

    Article  ADS  Google Scholar 

  9. N. Sun, J.W. Chen, D.M. Tang, Stopping light in an active medium. Eur. Phys. J. D 69, 219 (2015)

    Article  ADS  Google Scholar 

  10. J.W. Chen, Y.Y. Dai, L. Yan, H.M. Zhao, Steady bound electromagnetic eigenstate arises in a homogeneous isotropic linear metamaterial with zero-real-part-of-impedance and nonzero-imaginary-part-of-wave-vector. Opt. Comm. 413, 167 (2018)

    Article  ADS  Google Scholar 

  11. J. Askne, B. Lind, Energy of electromagnetic waves in the presence of absorption and dispersion. Phys. Rev. A 2, 2335 (1970)

    Article  ADS  Google Scholar 

  12. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of and. Sov. Phys. Uspekhi 10, 509 (1968)

    Article  ADS  Google Scholar 

  13. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292, 77 (2001)

    Article  ADS  Google Scholar 

  14. R. Ruppin, Electromagnetic energy density in a dispersive and absorptive material. Phys. Lett. A 299, 309 (2002)

    Article  ADS  Google Scholar 

  15. T.J. Cui, J.A. Kong, Time-domain electromagnetic energy in frequency-dispersive left-handed medium. Phys. Rev. B 70, 205106 (2004)

    Article  ADS  Google Scholar 

  16. A.D. Boardman, K. Marinov, Electromagnetic energy in a dispersive metamaterial. Phys. Rev. B 73, 165110 (2006)

    Article  ADS  Google Scholar 

  17. P.G. Luan, Effective electrodynamics theory for the hyperbolic metamaterial consisting of metal-dielectric layers. Crystals 10, 863 (2020)

    Article  Google Scholar 

  18. Shivanand and K.J. Webb, “Electromagnetic field energy density in homogeneous negative index materials,” Opt. Express 20, 11370 (2012).

  19. I. Semchenko, A. Balmakou, S. Khakhomov, S. Tretyakov, Stored and absorbed energy of fields in lossy chiral single-component metamaterials. Phys. Rev. B 97, 014432 (2018)

    Article  ADS  Google Scholar 

  20. J.W. Chen, Y. Xuanyuan, Y.Y. Dai, Expressions of stored and dissipated energy densities. Optik 207, 163493 (2020)

    Article  ADS  Google Scholar 

  21. F.D. Nunes, T.C. Vasconcelos, M. Bezerra, J. Weiner, Electromagnetic energy density in dispersive and dissipated media. J. Opt. Soc. Am. B 28, 1544 (2011)

    Article  ADS  Google Scholar 

  22. Y. Liao, S. Zhang, Z. Tang, X. Liu, K. Huang, Power loss density of electromagnetic waves in unimolecular reactions. RSC Adv. 7, 26546 (2017)

    Article  ADS  Google Scholar 

  23. Y.Y. Dai, Y. Xuanyuan, J.W. Chen, Stored energy density of electromagnetic wave in dispersive media. Optik 206, 163999 (2020)

    Article  ADS  Google Scholar 

  24. N.F. Yu, P. Genvet, M.A. Kats et al., Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333 (2011)

    Article  ADS  Google Scholar 

  25. B. Xu, C. Wu et al., Generating an orbital-angular-momentum beam with a metasurface of gradient reflective phase. Op. Mater. Express 6, 3940 (2016)

    Article  ADS  Google Scholar 

  26. G. Rikken, B. Tiggelen, Direction of optical flow in a transverse magnetic field. Phys. Rev. Lett. 78, 847 (1997)

    Article  ADS  Google Scholar 

  27. Y. Wang, W. Dou, H. Meng, Vector analyses of linearly and circularly polarized Bessel beams using Hertz vector potentials. Opt. Exp. 22, 7821 (2014)

    Article  Google Scholar 

  28. J.W. Chen, J.J. She, Expressions of stored and dissipated energy densities. Eur. Phys. J. Plus 137, 502 (2022)

    Article  Google Scholar 

  29. J.W. Chen, L.L. Zhu, G.X. Yuan, Z.K. Tao, Significant effects of cross term of Poynting vector on an electromagnetic wave propagation through a slab with low real part of impedance. Eur. Phys. J. D 71, 26 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the editors and reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangwei Chen.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., She, J. Derivation of expression of time-averaged stored energy density of electromagnetic waves. Appl. Phys. B 128, 125 (2022). https://doi.org/10.1007/s00340-022-07840-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07840-9

Navigation