Skip to main content
Log in

Improving the efficiency of micro-LEDs at high current densities employing a micro-current spreading layer-confined structure

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, a micro-current spreading layer (mCSL)-confined micro-LED is proposed and fabricated. The mCSL is used to restrict the current channel in the 300 μm mesa of the micro-LED. Simulation results show that the internal quantum efficiency (IQE) of the mCSL-confined micro-LED is lower at low current densities, while it is higher at high current densities, compared with conventional micro-LED without mCSL. The current density distribution and the recombination rate are analyzed to prove the better restriction of the current channel at higher current density, resulting in enhanced efficiency at higher current density. With the decrease of the size of the mCSL, the efficiency of the mCSL-confined micro-LED decreases at low current densities, but increases at high current densities. This work provides a theoretical foundation for the structure design of LEDs in the future to optimize the efficiency of micro-LEDs in different applications such as display and communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time, but may be obtained from the authors upon reasonable request.

References

  1. X. Zhou, P. Tian, C.W. Sher, J. Wu, H. Liu, R. Lin, C.H. Kuo, Prog. Quantum Electron. 71, 100263 (2020)

    Article  Google Scholar 

  2. Z. Wang, X. Shan, X. Cui, P. Tian, J. Semicond. 41, 041606 (2020)

    Article  ADS  Google Scholar 

  3. Z. Wang, S. Zhu, X. Shan, Z. Yuan, X. Cui, P. Tian, Opt. Lett. 46(17), 4358–4361 (2021)

    Article  ADS  Google Scholar 

  4. M. Xia, S. Zhu, J. Luo, Y. Xu, P. Tian, G. Niu, J. Tang, Adv. Opt. Mater. 9(12), 2002239 (2021)

    Article  Google Scholar 

  5. G. Zhou, R. Lin, Z. Qian, X. Zhou, X. Shan, X. Cui, P. Tian, J. Phys. D: Appl. Phys. 54, 335104 (2021)

    Article  ADS  Google Scholar 

  6. S. Zhu, P. Qiu, Z. Qian, X. Shan, Z. Wang, K. Jiang, X. Sun, X. Cui, G. Zhang, D. Li, P. Tian, Opt. Lett. 46(9), 2147–2150 (2021)

    Article  ADS  Google Scholar 

  7. Z. Chen, S. Yan, C. Danesh, J. Phys. D: Appl. Phys. 54(12), 123001 (2021)

    Article  ADS  Google Scholar 

  8. Z. Fan, J. Lin, H. Jiang, J. Phys. D: Appl. Phys. 41(9), 094001 (2008)

    Article  ADS  Google Scholar 

  9. X. Jiang, C. Zhang, C. Mo, X. Wang, J. Zhang, Z. Qian, J. Lin, F. Jiang, Opt. Mater. 89, 505–516 (2019)

    Article  ADS  Google Scholar 

  10. H. Zhang, P. Li, H. Li, J. Song, S. Nakamura, S.P. Denbaars, Appl. Phys. Lett. 117(18), 181105 (2020)

    Article  ADS  Google Scholar 

  11. A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, D. Feezell, IEEE Electron Device Lett. 39(4), 520–523 (2018)

    Article  ADS  Google Scholar 

  12. M.S. Wong, S. Nakamura, S.P. Denbaars, ECS J. Sold State Sci. 9(1), 015012 (2019)

    Google Scholar 

  13. L. Wang, Z. Wei, C.J. Chen, L. Wang, H.Y. Fu, L. Zhang, K.C. Chen, M.C. Dong, Z. Hao, Y. Luo, Photonics Res. 9(5), 792–802 (2021)

    Article  Google Scholar 

  14. T. Wu, C.W. Sher, Y. Lin, C.F. Lee, S. Liang, Y. Lu, S.W.H. Chen, W. Guo, H.C. Kuo, Z. Chen, Appl. Sci. 8(9), 1557 (2018)

    Article  Google Scholar 

  15. Y. Huang, G. Tan, F. Gou, M.C. Li, S.L. Lee, S.T. Wu, J. Soc. Inf. Disp. 27(7), 387–401 (2019)

    Article  Google Scholar 

  16. J.J. Wierer Jr., N. Tansu, Laser Photonics Rev. 13(9), 1900141 (2019)

    Article  ADS  Google Scholar 

  17. R. Lin, X. Liu, G. Zhou, Z. Qian, X. Cui, P. Tian, Adv. Opt. Mater. 9(12), 2002211 (2021)

    Article  Google Scholar 

  18. S. Mei, X. Liu, W. Zhang, R. Liu, L. Zheng, R. Guo, P. Tian, A.C.S. Appl, Mater. Inter. 10(6), 5641–5648 (2018)

    Article  Google Scholar 

  19. X. Liu, R. Lin, H. Chen, S. Zhang, Z. Qian, G. Zhou, X. Chen, X. Zhou, L. Zheng, R. Liu, P. Tian, ACS Photonics 6(12), 3186–3195 (2019)

    Article  Google Scholar 

  20. P. Tian, J.J. McKendry, Z. Gong, B. Guilharbert, I.M. Watson, E. Gu, Z. Chen, G. Zhang, M.D. Dawson, Appl. Phys. Lett. 101(23), 231110 (2012)

    Article  ADS  Google Scholar 

  21. V. Malyutenko, S. Bolgov, A. Podoltsev, Appl. Phys. Lett. 97(25), 251110 (2010)

    Article  ADS  Google Scholar 

  22. G. Erzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, E. Zanoni, J. Appl. Phys. 114(7), 071101 (2013)

    Article  ADS  Google Scholar 

  23. W. Tian, J. Li, Appl. Opt. 59(29), 9225–9232 (2020)

    Article  ADS  Google Scholar 

  24. J.M. Smith, R. Key, M.S. Wong, Y.H. Baek, J.H. Kang, C.H. Kim, M.J. Gordon, S. Nakamura, J.S. Speck, S.P. Denbaars, Appl. Phys. Lett. 116(7), 071102 (2020)

    Article  ADS  Google Scholar 

  25. X. Liu, P. Tian, Z. Wei, S. Yi, Y. Huang, X. Zhou, Z.J. Qiu, L. Hu, Z. Fang, C. Cong, L. Zheng, R. Lin, IEEE Photonics J. 9(6), 7204909 (2017)

    Google Scholar 

  26. P. Tian, J.J.D. McKendry, J. Herrnsdorf, S. Watson, R. Ferreira, I.M. Watson, E. Gu, A.E. Kelly, M.D. Dawson, Appl. Phys. Lett. 105(17), 171107 (2014)

    Article  ADS  Google Scholar 

  27. P. Tian, P.R. Edwards, M.J. Wallace, R.W. Martin, J.J.D. McKendry, E. Gu, M.D. Dawson, Z.J. Qiu, C. Jia, Z. Chen, G. Zhang, L. Zheng, R. Liu, J. Phys. D: Appl. Phys. 50(7), 075101 (2017)

    Article  ADS  Google Scholar 

  28. I.E. Titkov, S.Y. Karpov, A. Yadav, V.L. Zerova, M. Zulonas, B. Galler, M. Strassburg, I. Pietzonka, H.J. Lugauer, E.U. Rafailov, IEEE J. Quantum Electron. 50(11), 911–920 (2014)

    Article  ADS  Google Scholar 

  29. M. Yamaguchi, A. Yamamoto, M. Tachikawa, Y. Itoh, M. Sugo, Appl. Phys. Lett. 53(23), 2293–2295 (1998)

    Article  ADS  Google Scholar 

  30. Y. Yang, X.A. Cao, J. Vac. Sci. Technol. B 27(6), 2337 (2009)

    Article  Google Scholar 

  31. M.S. Wong, C. Lee, D.J. Myers, D. Hwang, J.A. Kearns, T. Li, J.S. Speck, S. Nakamura, S.P. DenBarrs, Appl. Phys. Express 12(9), 097004 (2019)

    Article  ADS  Google Scholar 

  32. M.S. Wong, D. Hwang, A.I. Alhassan, C. Lee, R. Ley, S. Nakamura, S.P. DenBarrs, Opt. Express 26(16), 21324–21331 (2018)

    Article  ADS  Google Scholar 

  33. J. Zhu, T. Takahashi, D. Ohori, K. Endo, S. Samukawa, M. Shimizu, X.L. Wang, Phys. Status. Solid A 216(22), 1900380 (2019)

    Article  ADS  Google Scholar 

  34. D. Massoubre, P. Edwards, E. Xie, E. Richardson, I.M. Watson, E. Gu, M.D. Dawson, IEEE Photonics Conference. Burlingame, CA, USA (2012)

  35. D. Massoubre, E. Xie, B. Guihabert, J. Herrnsdorf, E. Gu, I.M. Watson, M.D. Dawson, Semicond. Sci. Technol. 29(1), 015005 (2013)

    Article  ADS  Google Scholar 

  36. L. Chang, Y.W. Yeh, S. Hang, K. Tian, J. Kou, W. Bi, Y. Zhang, Z.H. Zhang, Z. Liu, H.C. Kuo, Nanoscale Res. Lett. 15(16), 160 (2021)

    ADS  Google Scholar 

  37. A. Shaari, A.F.F. Ahmad, A.F.N. Ahmad, M.Z.K. Abdul, S. Daud, Microwave Opt. Technol. Lett. 63(3), 970–974 (2021)

    Article  Google Scholar 

  38. J. Park, J.H. Choi, K. Kong, J.H. Han, J.H. Park, N. Kim, E. Lee, D. Kim, J. Kim, D. Chung, S. Jun, M. Kim, E. Yoon, J. Shin, S. Hwang, Nat. Photonics 15, 449–455 (2021)

    Article  ADS  Google Scholar 

  39. K. Behrman, I. Kymissis, Opt. Express 29(10), 14841–14842 (2021)

    Article  ADS  Google Scholar 

  40. APSYS by CroSslight software Inc., Burnaby, Canada, 2020. http://www.crosslight.com

  41. J. Piprek, S. Nakamyra, IEE P-Optoelectron 149(4), 145–151 (2002)

    Article  Google Scholar 

  42. X. Guo, E. Schubert, J. Appl. Phys. 90(8), 4191–4195 (2001)

    Article  ADS  Google Scholar 

  43. W. Liu, C. Haller, Y. Chen, T. Weatherley, J.F. Carlin, G. Jacopin, R. Butte, N. Grandjean, Appl. Phys. Lett. 116(22), 222106 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Key Research and Development Program of China (No. 2021YFE0105300); National Natural Science Foundation of China (NSFC) (61974031); Fudan University-CIOMP Joint Fund (FC2020-001); Key Technologies R&D Program of Huzhou City Science and Technology Project (2020GG03); Natural Science Research of Jiangsu Higher Education Institutions of China (20KJB510014); NJUPTSF (NY220078); Foundation of Jiangsu Provincial Double-Innovation Doctor Program (JSSCBS20210522).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xugao Cui or Pengfei Tian.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yuan, Z., Zhou, G. et al. Improving the efficiency of micro-LEDs at high current densities employing a micro-current spreading layer-confined structure. Appl. Phys. B 128, 121 (2022). https://doi.org/10.1007/s00340-022-07839-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07839-2

Navigation