Skip to main content
Log in

High power, tunable hybrid fiber/bulk laser at 1030 nm and parametric frequency conversion in the near and mid-infrared

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on a high power, wavelength-agile, hybrid fiber-bulk laser, emitting up to 3.5 mJ 15 ns pulses at 1030 nm at 5 kHz repetition rate. This hybrid laser is composed of a commercial seed single-frequency fiber laser, tunable over several GHz, amplified in a dual-stage single-mode Ytterbium doped fiber amplifier, followed by two Yb:YAG solid crystal amplifiers. To illustrate the potential of such an architecture for future differential absorption lidar emitters, this hybrid source was used to pump an optical parametric amplifier (OPA) seeded by the idler at 3 \(\upmu\)m generated by a fixed nested cavity optical parametric oscillator (NesCOPO). The wavelength agility of the pump is transferred to the OPA signal beam to reach a fine tunability in the 1.5 \(\upmu\)m region. This fine tuning was used to measure the transmission spectrum of an acetylene gas cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Bogue, Sens. Rev. 35, 133 (2015)

    Article  Google Scholar 

  2. B.J. Orr, Encyclopedia of Analytical Chemistry, ed. by R. A. Meyers (Wiley, Chichester, 2017), pp. 1–49

  3. N. Menyuk, D.K. Killinger, Opt. Lett. 6, 301 (1981)

    Article  ADS  Google Scholar 

  4. F. Gibert, J. Pellegrino, D. Edouart, C. Cénac, L. Lombard, J. Le Gouët, T. Nuns, A. Cosentino, P. Spano, G. Di Nepi, Appl. Opt. 57, 10370 (2018)

    Article  ADS  Google Scholar 

  5. T.F. Refaat, U.N. Singh, J. Yu, M. Petros, S. Ismail, M.J. Kavaya, K.J. Davis, Appl. Opt. 54, 1387 (2015)

    Article  ADS  Google Scholar 

  6. T.F. Refaat, M. Petros, U.N. Singh, C.W. Antill, R.G. Remus, S. Ismail, IGARSS 2019 (IEEE, Yokohama, Japan, 2019), pp. 4861–4864

  7. J. Abshire, A. Ramanathan, H. Riris, J. Mao, G. Allan, W. Hasselbrack, C. Weaver, E. Browell, Rem. Sens. 6, 443 (2013)

    Article  ADS  Google Scholar 

  8. G.A. Wagner, D.F. Plusquellic, Appl. Opt. 55, 6292 (2016)

    Article  ADS  Google Scholar 

  9. G.A. Wagner, D.F. Plusquellic, Opt. Express 26, 19420 (2018)

    Article  ADS  Google Scholar 

  10. J.R. Chen, K. Numata, S.T. Wu, Opt. Express 27, 36487 (2019)

    Article  ADS  Google Scholar 

  11. G. Han, H. Xu, W. Gong, X. Ma, A. Liang, Appl. Opt. 56, 8532 (2017)

    Article  ADS  Google Scholar 

  12. K. Ertel, H. Linné, J. Bösenberg. Appl. Opt. 44, 5120 (2005)

    Article  ADS  Google Scholar 

  13. K. Numata, S. Wu, H. Riris, Appl. Phys. B 116, 959 (2014)

    Article  ADS  Google Scholar 

  14. K. Numata, H. Riris, S. Li, S. Wu, S.R. Kawa, M. Krainak, J. Abshire, J. Appl. Rem. Sens. 6, 063561 (2012)

    Article  ADS  Google Scholar 

  15. H. Riris, K. Numata, S. Wu, B. Gonzalez, M. Rodriguez, S. Scott, S. Kawa, J. Mao, J. Appl. Rem. Sens. 11, 034001 (2017)

    Article  ADS  Google Scholar 

  16. Y. Shibata, C. Nagasawa, M. Abo, Appl. Opt. 56, 1194 (2017)

    Article  ADS  Google Scholar 

  17. A. Godard, M. Raybaut, M. Lefebvre, in Encyclopedia of Analytical Chemistry, ed. by R.A. Meyers ((Wiley, Chichester, 2017), pp. 1–35

    Google Scholar 

  18. M. Stephen, A. Yu, J. Chen, K. Numata, S. Wu, B. Gonzales, L. Han, M. Fahey, M. Plants, M. Rodriguez, G. Allan, J. Abshire, J. Nicholson, A. Hariharan, W. Mamakos, B. Bean, Components and Packaging for Laser Systems IV, SPIE (2018), p. 1051308

  19. J. Hamperl, C. Capitaine, J.-B. Dherbecourt, M. Raybaut, P. Chazette, J. Totems, B. Grouiez, L. Régalia, R. Santagata, C. Evesque, J.-M. Melkonian, A. Godard, A. Seidl, H. Sodemann, C. Flamant, Atmos. Meas. Tech. 14, 6675 (2021)

    Article  Google Scholar 

  20. M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, G. Ehret, Appl. Phys. B 96, 201 (2009)

    Article  ADS  Google Scholar 

  21. J. Courtois, R. Bouchendira, M. Cadoret, I. Ricciardi, S. Mosca, M. De Rosa, P. De Natale, J.-J. Zondy, Opt. Lett. 38, 1972 (2013)

    Article  ADS  Google Scholar 

  22. I.D. Lindsay, B. Adhimoolam, P. Groß, M.E. Klein, K.-J. Boller, Opt. Express 13, 1234 (2005)

    Article  ADS  Google Scholar 

  23. M. Vainio, J. Peltola, S. Persijn, F.J.M. Harren, L. Halonen, Opt. Express 16, 11141 (2008)

    Article  ADS  Google Scholar 

  24. R. Zhu, J. Wang, J. Zhou, J. Liu, W. Chen, Appl. Opt. 51, 3826 (2012)

    Article  ADS  Google Scholar 

  25. X. Délen, L. Deyra, A. Benoit, M. Hanna, F. Balembois, B. Cocquelin, D. Sangla, F. Salin, J. Didierjean, P. Georges, Opt. Lett. 38, 995 (2013)

    Article  ADS  Google Scholar 

  26. M. Niklès, L. Thevenaz, P.A. Robert, J. Lightwave Technol. 15, 1842 (1997)

    Article  ADS  Google Scholar 

  27. G.P. Agrawal, Nonlinear Fiber Optics, 5th edn. (Elsevier/Academic Press, Amsterdam, 2013), pp. 355–388

    Google Scholar 

  28. A. Yeniay, J.-M. Delavaux, J. Toulouse, J. Lightwave Technol. 20, 1425 (2002)

    Article  ADS  Google Scholar 

  29. J.W. Dawson, M.J. Messerly, R.J. Beach, M.Y. Shverdin, E.A. Stappaerts, A.K. Sridharan, P.H. Pax, J.E. Heebner, C.W. Siders, C. Barty, Opt. Express 16, 13240 (2008)

    Article  ADS  Google Scholar 

  30. F. Lesparre, I. Martial, J. Didierjean, J.T. Gomes, W. Pallmann, B. Resan, A. Loescher, J.-P. Negel, T. Graf, M. Abdou Ahmed, F. Balembois, P. Georges, SPIE LASE—Solid State Lasers XXIV: Technology and Devices, ed. by W. A. Clarkson, R. K. Shori, SPIE (2015), p. 934203

  31. F. Lesparre, J.T. Gomes, X. Délen, I. Martial, J. Didierjean, W. Pallmann, B. Resan, M. Eckerle, T. Graf, M. Abdou-Ahmed, F. Druon, F. Balembois, P. Georges, Opt. Lett. 40, 2517 (2015)

    Article  ADS  Google Scholar 

  32. F. Lesparre, J.T. Gomes, X. Délen, I. Martial, J. Didierjean, W. Pallmann, B. Resan, F. Druon, F. Balembois, P. Georges, Opt. Lett. 41, 1628 (2016)

    Article  ADS  Google Scholar 

  33. F. Lesparre, J. T. Gomes, X. Délen, I. Martial, J. Didierjean, W. Pallmann, B. Resan, M. Eckerle, T. Graf, M. Abdou Ahmed, F. Druon, F. Balembois, P. Georges, Advanced Solid State Lasers. (OSA, Berlin, 2015), p. AW3A.9

  34. J.B. Barria, S. Roux, J.-B. Dherbecourt, M. Raybaut, J.-M. Melkonian, A. Godard, M. Lefebvre, Opt. Lett. 38, 2165 (2013)

    Article  ADS  Google Scholar 

  35. G. Aoust, A. Godard, M. Raybaut, J.-B. Dherbecourt, G. Canat, M. Lefebvre, J. Opt. Soc. Am. B 31, 3113 (2014)

    Article  ADS  Google Scholar 

  36. L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J.-P. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J.-M. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J.-Y. Mandin, S. Massie, S. Mikhailenko, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M.Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, J. Vander Auwera. J. Quant. Spectrosc. Radiat. Transf. 110, 533 (2009)

Download references

Acknowledgements

The authors are thankful to Kjell Martin Mølster from Department of Applied Physics, Royal Institute of Technology (KTH), Stockholm (Sweden), for helpful discussion about the laser linewidth.

Funding

This work is supported by “Investissements d’Avenir” LabEx PALM (ANR-10-LABX-0039-PALM)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Delen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamoudi, T., Guionie, M., Delen, X. et al. High power, tunable hybrid fiber/bulk laser at 1030 nm and parametric frequency conversion in the near and mid-infrared. Appl. Phys. B 128, 93 (2022). https://doi.org/10.1007/s00340-022-07813-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07813-y

Navigation