Skip to main content
Log in

Dispersion relation of a two-beam free electron laser with realistic helical wiggler and ion channel guiding in the presence of self-fields

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this study, dispersion relation and growth rate for a two-beam free-electron laser with a real (three-dimensional) helical wiggler in the presence of ion channel guiding and self-fields has been investigated. The dispersion relation is calculated by considering the interaction between the electron beam and the radiation fields and by simultaneously solving the Lorentz force equation, the continuity equation, and the wave equation. In the calculations, Floquet’s theorem and the linearization of the equations are used. The results showed that the growth rate of a two-beam free-electron laser is significantly higher than the growth rate of a single-beam free-electron laser for group I and group II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Abo-Bakr, J. Feikes, K. Holldack, G. Wüstefeld, W. Hübers, Phys. Rev. Lett. 88, 254801 (2002)

    Article  ADS  Google Scholar 

  2. G.P. Williams, Rev. Sci. Instrum. 73, 1461 (2002)

    Article  ADS  Google Scholar 

  3. G. Ramian, Nucl. Instr. and Meth, Phys. Res. A 318, 225 (1992).

  4. H.P. Freund, J.M. Antonsen Jr., Principles of free-electron lasers (Chapman and Hall, London, 1996)

    Google Scholar 

  5. N. Mahdizadeh, AIP Adv. 8, 075220 (2018)

    Article  ADS  Google Scholar 

  6. V.V. Kulish, A.V. Lysenko, V.I. Savchenko, Int. J. Infrared Millim. Waves 24, 129 (2003)

    Article  Google Scholar 

  7. V.V. Kulish, A.V. Lysenko, V.I. Savchenko, Int. J. Infrared Millim. Waves 24, 501 (2003)

    Article  Google Scholar 

  8. G. Bekefi, K.D. Jacobs, J. Appl. Phys. 53, 4113 (1982)

    Article  ADS  Google Scholar 

  9. M. Botton, A. Ron, IEEE Trans. Plasma Sci. 18, 416 (1990)

    Article  ADS  Google Scholar 

  10. M. Botton, A. Ron, J. Appl. Phys. 67, 6583 (1990)

    Article  ADS  Google Scholar 

  11. W. Liu, Z. Yang, Z. Liang, Int. J. Infrared Millim. Waves 27, 1073 (2006)

    Article  ADS  Google Scholar 

  12. H.P. Freund, D. Douglas, P.G. O’Shea, Nucl. Instrum. Methods Phys. Res. A 507, 373 (2003)

    Article  ADS  Google Scholar 

  13. P. Jha, P. Kumar, Phys. Rev. E 57, 2256 (1998)

    Article  ADS  Google Scholar 

  14. H. Mehdian, A. Raghavi, Plasma Phys. Control. Fusion 49, 69 (2007)

    Article  ADS  Google Scholar 

  15. A.A. Kordbacheh, B. Maraghechi, B. Farokhi, J.E. Willett, Phys. Plasmas 12, 113106 (2005)

    Article  ADS  Google Scholar 

  16. A. Kordbacheh, B. Maraghechi, H. Aghahosseini, Phys. Plasmas 11, 4483 (2004)

    Article  ADS  Google Scholar 

  17. O. Demokan, Y. Kabak, Phys. Fluids B 4, 3382 (1992)

    Article  ADS  Google Scholar 

  18. U.-H. Hwang, H. Mehdian, J.E. Willett, Y.M. Aktas, Phys. Plasmas 9, 1010 (2002)

    Article  ADS  Google Scholar 

  19. L. Shenggang, R.J. Barker, G. Hong, Y. Yang, Nucl Instrum Methods Phy Res A 475, 153 (2001)

    Article  ADS  Google Scholar 

  20. H. Mehdian, A. Hasanbeigi, S. Jafari, Phys. Plasmas 15, 073103 (2008)

    Article  ADS  Google Scholar 

  21. H. Mehdian, S. Jafari, A. Hasanbeigi, Phys. Plasmas 15, 073102 (2008)

    Article  ADS  Google Scholar 

  22. Z. Rezaei, B. Farokhi, J Theor Appl Phys 14, 149 (2020)

    Article  Google Scholar 

  23. G. Dattoli, E. Palma, S. Licciardi, E. Sabia, Appl. Sci. 11, 85 (2021)

    Article  Google Scholar 

  24. A.V. Krasavin, P. Ginzburg, A.V. Zayats, Laser Photonics Rev. 12, 1700082 (2018)

    Article  ADS  Google Scholar 

  25. M.G. Guetg, A.A. Lutman, Y. Ding, T.J. Maxwell, F.G. Decker, U. Bergmann, Z. Huang, Phys. Rev. Lett. 120, 014801 (2018)

    Article  ADS  Google Scholar 

  26. A. Fisher, P. Musumeci, S.B. Van der Gee, Phys Rev Accel Beams 23, 110702 (2020)

    Article  ADS  Google Scholar 

  27. K.B. Oganesyan, Laser Phys. Lett. 12, 116002 (2015)

    Article  ADS  Google Scholar 

  28. D.N. Klochkov, K.B. Oganesyan, Y.V. Rostovtsev, G. Kurizki, Laser Phys. Lett. 11, 125001 (2014)

    Article  ADS  Google Scholar 

  29. H. Mehdian, N. Abbasi, Phys. Plasmas 15, 013111 (2008)

    Article  ADS  Google Scholar 

  30. H. Mehdian, S. Saviz, A. Hasanbeigi, Phys. Plasmas 15, 043103 (2008)

    Article  ADS  Google Scholar 

  31. H. Mehdian, S. Saviz, Phys. Scr. 80, 045401 (2009)

    Article  ADS  Google Scholar 

  32. T. Mohsenpour, B. Maraghechi, J Plasma Phys 81, 123–302 (2015)

    Article  Google Scholar 

  33. H.P. Freund, R.H. Jackson, D.E. Pershing, Phys. Fluids B 5, 2318 (1993)

    Article  ADS  Google Scholar 

  34. S. Chang, Z. Zhang, Appl. Phys. Lett. 55, 1380 (1989)

    Article  ADS  Google Scholar 

  35. M. Esmaeilzadeh, H. Mehdian, J.E. Willett, Y.M. Aktas, Phys. Plasmas 10, 905 (2003)

    Article  ADS  Google Scholar 

  36. M. Esmaeilzadeh, J.E. Willett, L.J. Willett, J. Plasma Phys. 72, 59 (2006)

    Article  ADS  Google Scholar 

  37. S. Mirzanejhad, B. Maraghechi, T. Mohsenpour, Phys. Plasmas 11, 4777 (2004)

    Article  ADS  Google Scholar 

  38. S. Mirzanejhad, B. Maraghechi, T. Mohsenpour, J. Phys. D: Appl. Phys. 39, 3742 (2006)

    Article  Google Scholar 

  39. M. Esmaeilzadeh, J.E. Willett, Phys. Plasmas 14, 033102 (2007)

    Article  ADS  Google Scholar 

  40. P. Jha, P. Kumar, IEEE Trans. Plasma Sci. 24, 359 (1996)

    Article  Google Scholar 

  41. K. Takayama, S. Hiramatsu, Phys. Rev. A 37, 173 (1988)

    Article  ADS  Google Scholar 

  42. Y. Seo, V.K. Tripathi, C.S. Liu, Phys. Fluids B 1, 221 (1989)

    Article  ADS  Google Scholar 

  43. M. Esmaeilzadeh, J.E. Willett, L.J. Willett, J Plasma physics 72, 59 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Golshad Kheiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheiri, G. Dispersion relation of a two-beam free electron laser with realistic helical wiggler and ion channel guiding in the presence of self-fields. Appl. Phys. B 128, 80 (2022). https://doi.org/10.1007/s00340-022-07796-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07796-w

Navigation