Skip to main content
Log in

A self-reference direct-measuring scheme for precision optical frequency ratio measurement

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A self-reference direct-measuring scheme for optical frequency ratio measurement is present in this work. The mathematical construction for the scheme is described in detail. An RF processing system was built according to the scheme. To examine the precision of the system, we measured the frequency ratio between the second harmonic and fundamental frequencies of a 1560-nm ultrastable laser. In 1 day’s measurement, a ratio of \((2+1.2\times 10^{-22})\pm 1.4\times 10^{-21}\) was obtained. The corresponding fractional frequency instability was \(5\times 10^{-19}\) at the averaging time of 1 s and less than \(2\times 10^{-21}\) at 1000–10,000 s. This result suggested that the precision of the RF processing system was sufficient for comparison of state-of-the-art optical clocks at the level of \(10^{-18}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.D. Ludlow, M.M. Boyd, J. Ye, E. Peik, P.O. Schmidt, Rev. Mod. Phys. 87(2), 637 (2015)

    Article  ADS  Google Scholar 

  2. F. Riehle, P. Gill, F. Arias, L. Robertsson, Metrologia 55(2), 188 (2018)

    Article  ADS  Google Scholar 

  3. R. Godun, P. Nisbet-Jones, J. Jones, S. King, L. Johnson, H. Margolis, K. Szymaniec, S. Lea, K. Bongs, P. Gill, Phys. Rev. Lett. 113(21), 210801 (2014)

    Article  ADS  Google Scholar 

  4. N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, E. Peik, Phys. Rev. Lett. 113(21), 210802 (2014)

    Article  ADS  Google Scholar 

  5. M. Kozlov, M. Safronova, J.C. López-Urrutia, P. Schmidt, Rev. Mod. Phys. 90(4), 045005 (2018)

    Article  ADS  Google Scholar 

  6. T. Nicholson, S. Campbell, R. Hutson, G. Marti, B. Bloom, R. McNally, W. Zhang, M. Barrett, M. Safronova, G. Strouse et al., Nat. Commun. 6(1), 1–8 (2015)

    Google Scholar 

  7. N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, E. Peik, Phys. Rev. Lett. 116(6), 063001 (2016)

    Article  ADS  Google Scholar 

  8. T. Bothwell, D. Kedar, E. Oelker, J.M. Robinson, S.L. Bromley, W.L. Tew, J. Ye, C.J. Kennedy, Metrologia 56(6), 065004 (2019)

    Article  ADS  Google Scholar 

  9. Y. Huang, B. Zhang, M. Zeng, Y. Hao, H. Zhang, H. Guan, Z. Chen, M. Wang, K. Gao. arXiv preprint arXiv:2103.08913 (2021)

  10. E. Oelker, R. Hutson, C. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. Robinson, G. Marti et al., Nat. Photon. 13(10), 714–719 (2019)

    Article  ADS  Google Scholar 

  11. S.M. Brewer, J.-S. Chen, A.M. Hankin, E.R. Clements, C.-W. Chou, D.J. Wineland, D.B. Hume, D.R. Leibrandt, Phys. Rev. Lett. 123(3), 033201 (2019)

    Article  ADS  Google Scholar 

  12. J. Stenger, H. Schnatz, C. Tamm, H.R. Telle, Phys. Rev. Lett. 88(7), 073601 (2002)

    Article  ADS  Google Scholar 

  13. H.R. Telle, B. Lipphardt, J. Stenger Appl. Phys. B 74(1), 1–6 (2002)

    Article  ADS  Google Scholar 

  14. T. Rosenband, D. Hume, P. Schmidt, C.-W. Chou, A. Brusch, L. Lorini, W. Oskay, R.E. Drullinger, T.M. Fortier, J.E. Stalnaker et al., Science 319(5871), 1808–1812 (2008)

    Article  ADS  Google Scholar 

  15. M. Takamoto, I. Ushijima, M. Das, N. Nemitz, T. Ohkubo, K. Yamanaka, N. Ohmae, T. Takano, T. Akatsuka, A. Yamaguchi et al., Comptes Rendus Phys. 16(5), 489–498 (2015)

    Article  Google Scholar 

  16. N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, H. Katori, Nat. Photon. 10(4), 258–261 (2016)

    Article  ADS  Google Scholar 

  17. N. Ohmae, F. Bregolin, N. Nemitz, H. Katori, Opt. Express 28(10), 15112–15121 (2020)

    Article  ADS  Google Scholar 

  18. B.A.C.O.N.B. Collaboration, Nature 591(7851), 564–569 (2021)

    Article  ADS  Google Scholar 

  19. S. Dörscher, N. Huntemann, R. Schwarz, R. Lange, E. Benkler, B. Lipphardt, U. Sterr, E. Peik, C. Lisdat, Metrologia 58(1), 015005 (2021)

    Article  ADS  Google Scholar 

  20. Y. Yao, Y. Jiang, H. Yu, Z. Bi, L. Ma, Natl. Sci. Rev. 3(4), 463–469 (2016)

    Article  Google Scholar 

  21. E. Benkler, B. Lipphardt, T. Puppe, R. Wilk, F. Rohde, U. Sterr, Opt. Express 27(25), 36886–36902 (2019)

    Article  ADS  Google Scholar 

  22. J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, X. Huang, Appl. Phys. B 123(4), 1–9 (2017)

    Article  Google Scholar 

  23. K. Cui, S. Chao, C. Sun, S. Wang, P. Zhang, Y. Wei, J. Cao, H. Shu, X. Huang. arXiv preprint arXiv:2012.05496 (2020)

  24. H. Liu, X. Zhang, K.-L. Jiang, J.-Q. Wang, Q. Zhu, Z.-X. Xiong, L.-X. He, B.-L. Lyu, Chin. Phys. Lett. 34(2), 020601 (2017)

    Article  ADS  Google Scholar 

  25. L.-S. Ma, P. Jungner, J. Ye, J.L. Hall, Opt. Lett. 19(21), 1777–1779 (1994)

    Article  ADS  Google Scholar 

  26. K. Kashiwagi, Y. Nakajima, M. Wada, S. Okubo, H. Inaba, Opt. Express 26(7), 8831–8840 (2018)

    Article  ADS  Google Scholar 

  27. O. Terra, IEEE Trans. Instrum. Meas. 69(10), 7773–7780 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the colleagues from National Time Service Center, CAS for technical support on the erbium-fiber based frequency comb.

Funding

National Key R&D Program of China, Grant No. 2017YFA0304403 and 2020YFA0309801, the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDB21010300 and XDB21030100, National Natural Science Foundation of China, Grant No. 91636110 and U1738141.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qunfeng Chen.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest related to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, P., Sun, H., Wang, Y. et al. A self-reference direct-measuring scheme for precision optical frequency ratio measurement. Appl. Phys. B 128, 73 (2022). https://doi.org/10.1007/s00340-022-07794-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07794-y

Keywords

Navigation