Skip to main content

Advertisement

Log in

Thermodynamic cost of quantum transfers

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We explain how thermodynamic cost can use for diagnosing optimal dense coding. We present a quantum channel where is included two initially uncorrelated thermal quantum systems to reveal the optimal dense coding using thermodynamic cost. The interest in dense coding brings into quantum correlation calculation. At first, the quantum Fisher information and spin squeezing are used to quantify the correlation dynamics over the system. The system reveals that the thermal evolution of quantum correlations depends crucially on specific energy and temperature. Also, they can be utilized as control parameters for optimal dense coding. Several interesting features of the variations of the energy cost and the dense coding capacity are obtained. It can keep its valid capacity value in a broad range of temperatures by increasing the energy value of excited states. Also, we can identify valid dense coding with the help of calculating the energy cost of the system. Using this approach, identifying a critical point of this model in dense coding capacity quality can be very effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. K. Maruyama, F. Nori, V. Vedral, Colloquium: the physics of Maxwell’s demon and information. Rev. Mod. Phys. 81(1), 1 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. M. Horodecki, J. Oppenheim, Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun. 4(1), 1–6 (2013)

    Article  Google Scholar 

  3. S. Ahadpour, F. Mirmasoudi, Coupled two-qubit engine and refrigerator in Heisenberg model. Quantum Inf. Process. 20(2), 1–13 (2021)

    Article  MathSciNet  Google Scholar 

  4. S. Haddadi, A. Akhound, Thermal entanglement properties in two qubits one-axis spin squeezing model with an external magnetic field. Int. J. Theor. Phys. 58(2), 399–402 (2019)

    Article  MATH  Google Scholar 

  5. L. Del Rio, J. Åberg, R. Renner, O. Dahlsten, V. Vedral, The thermodynamic meaning of negative entropy. Nature 474(7349), 61–63 (2011)

    Article  Google Scholar 

  6. M. Horodecki, J. Oppenheim, (Quantumness in the context of) resource theories. Int. J. Mod. Phys. B 27, 1345019 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. M. Huber, M. Perarnau-Llobet, K.V. Hovhannisyan, P. Skrzypczyk, C. Klöckl, N. Brunner, A. Acín, Thermodynamic cost of creating correlations. New J. Phys. 17(6), 065008 (2015)

    Article  ADS  MATH  Google Scholar 

  8. S. Ahadpour, F. Mirmasoudi, Thermal quantum discord and super quantum discord teleportation via a two-qubit spin-squeezing model. Theor. Math. Phys. 195(1), 625–639 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Alexandrou, A. Athenodorou, C. Chrysostomou, S. Paul, The critical temperature of the 2d-Ising model through deep learning autoencoders. Eur. Phys. J. B 93(12), 1–15 (2020)

    Article  Google Scholar 

  10. M.A. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2002)

    MATH  Google Scholar 

  11. S. Ahadpour, F. Mirmasoudi, Dynamics of quantum correlations for different types of noisy channels. Opt. Quant. Electron. 52(8), 1–14 (2020)

    Article  Google Scholar 

  12. A.K. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Godolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. C.H. Bennett, S.J. Wiesner, Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. A. Barenco, A.K. Ekert, Dense coding based on quantum entanglement. J. Mod. Opt. 42(6), 1253–1259 (1995)

    Article  ADS  Google Scholar 

  16. S.L. Braunstein, H.J. Kimble, in Quantum Information with Continuous Variables. (Springer, New York, 2000), pp. 95–103

  17. S. Bose, M.B. Plenio, V. Vedral, Mixed state dense coding and its relation to entanglement measures. J. Mod. Opt. 47(2–3), 291–310 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  18. F. Mirmasoudi, S. Ahadpour, Dynamics of super quantum discord and optimal dense coding in quantum channels. J. Phys. A Math. Theor. 51(34), 345302 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. F. Mirmasoudi, S. Ahadpour, Application quantum renormalization group to optimal dense coding in transverse Ising model. Physica A 515, 232–239 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  20. K. Mattle, H. Weinfurter, P.G. Kwiat, A. Zeilinger, Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656 (1996)

    Article  ADS  Google Scholar 

  21. S. Haddadi, M. Bohloul, A brief overview of bipartite and multipartite entanglement measures. Int. J. Theor. Phys. 57(12), 3912–3916 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Szalay, Multipartite entanglement measures. Phys. Rev. A 92(4), 042329 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. M.-L. Hu, X. Hu, J. Wang, Y. Peng, Y.-R. Zhang, H. Fan, Quantum coherence and geometric quantum discord. Phys. Rep. 762, 1–100 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  24. A. Misra, U. Singh, S. Bhattacharya, A.K. Pati, Energy cost of creating quantum coherence. Phys. Rev. A 93(5), 052335 (2016)

    Article  ADS  Google Scholar 

  25. N. Behzadi, E. Soltani, E. Faizi, Thermodynamic cost of creating global quantum discord and local quantum uncertainty. Int. J. Theor. Phys. 57(10), 3207–3214 (2018)

    Article  MATH  Google Scholar 

  26. M.G. Paris, Quantum estimation for quantum technology. Int. J. Quantum Inf. 7(supp01), 125–137 (2009)

    Article  MATH  Google Scholar 

  27. S.L. Braunstein, C.M. Caves, G.J. Milburn, Generalized uncertainty relations: theory, examples, and Lorentz invariance. Ann. Phys. 247(1), 135–173 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. H. Cheraghi, S. Mahdavifar, Dynamics of coherence: Maximal quantum fisher information versus Loschmidt echo. Phys. Rev. B 102(2), 024304 (2020)

    Article  ADS  Google Scholar 

  29. Y.-R. Zhang, Y. Zeng, H. Fan, J. You, F. Nori, Characterization of topological states via dual multipartite entanglement. Phys. Rev. Lett. 120(25), 250501 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  30. H. Strobel, W. Muessel, D. Linnemann, T. Zibold, D.B. Hume, L. Pezzè, A. Smerzi, M.K. Oberthaler, Fisher information and entanglement of non-gaussian spin states. Science 345(6195), 424–427 (2014)

    Article  ADS  Google Scholar 

  31. T.-L. Wang, L.-N. Wu, W. Yang, G.-R. Jin, N. Lambert, F. Nori, Quantum fisher information as a signature of the superradiant quantum phase transition. New J. Phys. 16(6), 063039 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  32. P. Zanardi, M.G. Paris, L.C. Venuti, Quantum criticality as a resource for quantum estimation. Phys. Rev. A 78(4), 042105 (2008)

    Article  ADS  Google Scholar 

  33. B. Raffah, S. Abdel-Khalek, K. Berrada, E. Khalil, Y. Al-Hadeethi, N. Almalky, M. Wahiddin, Quantum correlations and quantum fisher information of two qubits in the presence of the time-dependent coupling effect. Eur. Phys. J. Plus 135(6), 1–10 (2020)

    Article  Google Scholar 

  34. B. Escher, R. de MatosFilho, L. Davidovich, General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 7(5), 406–411 (2011)

    Article  Google Scholar 

  35. M.M. Taddei, B.M. Escher, L. Davidovich, R.L. de Matos Filho, Quantum speed limit for physical processes. Phys. Rev. Lett. 110(5), 050402 (2013)

    Article  ADS  Google Scholar 

  36. A.S. Sørensen, K. Mølmer, Entanglement and extreme spin squeezing. Phys. Rev. Lett. 86, 4431–4434 (2001)

    Article  ADS  Google Scholar 

  37. D.J. Wineland, J.J. Bollinger, W.M. Itano, D.J. Heinzen, Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67–88 (1994)

    Article  ADS  Google Scholar 

  38. M. Kitagawa, M. Ueda, Squeezed spin states. Phys. Rev. A 47(6), 5138 (1993)

    Article  ADS  Google Scholar 

  39. F. Verstraete, K. Audenaert, B. De Moor, Maximally entangled mixed states of two qubits. Phys. Rev. A 64(1), 012316 (2001)

    Article  ADS  Google Scholar 

  40. C.W. Helstrom, Quantum Detection and Estimation Theory, vol. 3 (Academic Press, New York, 1976)

    MATH  Google Scholar 

  41. S.M. Kay, Fundamentals of Statistical Signal Processing (Prentice Hall PTR, New Jersey, 1993)

    MATH  Google Scholar 

  42. M.G. Genoni, S. Olivares, M.G. Paris, Optical phase estimation in the presence of phase diffusion. Phys. Rev. Lett. 106(15), 153603 (2011)

    Article  ADS  Google Scholar 

  43. F. Chapeau-Blondeau, Entanglement-assisted quantum parameter estimation from a noisy qubit pair: A fisher information analysis. Phys. Lett. A 381(16), 1369–1378 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  44. V. Giovannetti, S. Lloyd, L. Maccone, Quantum-enhanced measurements: beating the standard quantum limit. Science 306(5700), 1330–1336 (2004)

    Article  ADS  Google Scholar 

  45. M.N. Bera, Role of Quantum Correlation in Metrology Beyond Standard Quantum Limit, arXiv preprint. arXiv:1405.5357 (2014)

  46. X. Wang, B.C. Sanders, Spin squeezing and pairwise entanglement for symmetric multiqubit states. Phys. Rev. A 68(4), 012101 (2003)

    Article  ADS  Google Scholar 

  47. T. Hiroshima, Optimal dense coding with mixed state entanglement. J. Phys. A Math. Gen. 34(35), 6907 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. G. Watanabe, B.P. Venkatesh, P. Talkner, A. Del Campo, Quantum performance of thermal machines over many cycles. Phys. Rev. Lett. 118(5), 050601 (2017)

    Article  ADS  Google Scholar 

  49. A. Hewgill, A. Ferraro, G. De Chiara, Quantum correlations and thermodynamic performances of two-qubit engines with local and common baths. Phys. Rev. A 98(4), 042102 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

FM developed the theoretical formalism, performed the analytic calculations, and performed the numerical simulations. Both FM and SA authors contributed to the final version of the manuscript. SA supervised the project.

Corresponding author

Correspondence to Sodeif Ahadpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahadpour, S., Mirmasoudi, F. Thermodynamic cost of quantum transfers. Appl. Phys. B 128, 64 (2022). https://doi.org/10.1007/s00340-022-07788-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07788-w

Navigation