Skip to main content
Log in

Simultaneous measurements of temperature, CO2 concentration and soot volume fraction in counterflow diffusion flames using a single mid-infrared laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on the development of a mid-infrared laser sensor near 4172 nm for in-situ, quantitative and simultaneous measurements of temperature, CO2 concentration and soot volume fraction (SVF) in counterflow diffusion flames under different CO2 dilution (0–30%) conditions. In the experiment, multiline absorption spectroscopy was used for sensitive detection of temperature and CO2 concentration. A novel intensity modulation method together with reconstructed arbitrary waveform was performed to achieve reliable and simultaneous SVF measurement based on laser extinction. Spatially resolved measurements of thermochemical and sooting structures were achieved through tomographic reconstruction. The measured temperature and CO2 concentration were in good agreement with numerical predictions using a well-validated kinetic model. SVF profile also agreed well with the reference laser-induced incandescence soot measurement. The sensor was further applied to quantify the effects of CO2 dilution on flame thermochemical structure and soot formation. The experimentally determined temperature and SVF were both observed to decrease with the increase of CO2 no matter which dilution mode (fuel/oxidizer side or both sides) was applied. Soot formation was significantly suppressed when the dilution was applied to oxidizer side. The present sensor has good potential for multi-parameters diagnostics in sooting flames by providing a solution with compact optical setup and superior precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A.F. Ghoniem, Needs, resources and climate change: clean and efficient conversion technologies. Prog Energy Combust Sci 37, 15–51 (2011)

    Google Scholar 

  2. C. Xu, J. Yang, L. He, W. Wei, Y. Yang, X. Yin, W. Yang, A. Lin, Carbon capture and storage as a strategic reserve against China’s CO2 emissions. Environ Dev 37, 100608 (2021)

    Google Scholar 

  3. E.S. Rubin, H. Mantripragada, A. Marks, P. Versteeg, J. Kitchin, The outlook for improved carbon capture technology. Prog Energy Combust Sci 38, 630–671 (2012)

    Google Scholar 

  4. L. Chen, S.Z. Yong, A.F. Ghoniem, Oxy-fuel combustion of pulverized coal: characterization, fundamentals, stabilization and CFD modeling. Prog Energy Combust Sci 38, 156–214 (2012)

    Google Scholar 

  5. A. Ahsan, H. Ahsan, J.S. Olfert, L.W. Kostiuk, Quantifying the carbon conversion efficiency and emission indices of a lab-scale natural gas flare with internal coflows of air or steam. Exp Therm Fluid Sci 103, 133–142 (2019)

    Google Scholar 

  6. I.M. Kennedy, The health effects of combustion-generated aerosols. Proc Combust Inst 31, 2757–2770 (2007)

    Google Scholar 

  7. O.G. Fawole, X.M. Cai, A.R. MacKenzie, Gas flaring and resultant air pollution: a review focusing on black carbon. Environ Pollut 216, 182–197 (2016)

    Google Scholar 

  8. R. Wang, S. Tao, H. Shen, Y. Huang, H. Chen, Y. Balkanski et al., Trend in global black carbon emissions from 1960 to 2007. Environ Sci Technol 48, 6780–6787 (2014)

    ADS  Google Scholar 

  9. M. Abián, A. Millera, R. Bilbao, M.U. Alzueta, Effect of recirculation gases on soot formed from ethylene pyrolysis. Combust Sci Technol 184, 980–994 (2012)

    Google Scholar 

  10. K. Al-Qurashi, Y. Zhang, A.L. Boehman, Impact of intake CO2 addition and exhaust gas recirculation on NOx emissions and soot reactivity in a common rail diesel engine. Energy Fuels 26, 6098–6105 (2012)

    Google Scholar 

  11. D.T. Hountalas, S.I. Raptotasios, T.C. Zannis, Implications of exhaust gas, CO2, and N2 recirculation on heavy-duty diesel engine performance, soot, and NO emissions: a comparative study. Energy Fuels 27, 4910–4929 (2013)

    Google Scholar 

  12. H. Guo, G.J. Smallwood, A Numerical study on the influence of CO2 addition on soot formation in an ethylene/air diffusion flame. Combust Sci Technol 180, 1695–1708 (2008)

    Google Scholar 

  13. M. Abián, A. Millera, R. Bilbao, M.U. Alzueta, Experimental study on the effect of different CO2 concentrations on soot and gas products from ethylene thermal decomposition. Fuel 91, 307–312 (2012)

    Google Scholar 

  14. D. Liu, J. Santner, C. Togbé, D. Felsmann, J. Koppmann, A. Lackner et al., Flame structure and kinetic studies of carbon dioxide-diluted dimethyl ether flames at reduced and elevated pressures. Combust Flame 160, 2654–2668 (2013)

    Google Scholar 

  15. F. Yan, M. Zhou, L. Xu, Y. Wang, S.H. Chung, An experimental study on the spectral dependence of light extinction in sooting ethylene counterflow diffusion flames. Exp Therm Fluid Sci 100, 259–270 (2019)

    Google Scholar 

  16. H. Bladh, J. Johnsson, P.E. Bengtsson, On the dependence of the laser-induced incandescence (LII) signal on soot volume fraction for variations in particle size. Appl Phys B 90, 109–125 (2007)

    ADS  Google Scholar 

  17. K. Gleason, F. Carbone, A. Gomez, Effect of temperature on soot inception in highly controlled counterflow ethylene diffusion flames. Combust Flame 192, 283–294 (2018)

    Google Scholar 

  18. M.Y. Choi, A. Hamins, H. Rushmeier, T. Kashiwagi, Simultaneous optical measurement of soot volume fraction, temperature, and CO2 in heptane pool fire. Symp (Int) Combust 25, 1471–1480 (1994)

    Google Scholar 

  19. M.G. Allen, Diode laser absorption sensors for gas-dynamic and combustion flows. Meas Sci Technol 9, 545–562 (1998)

    ADS  Google Scholar 

  20. C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Infrared laser-absorption sensing for combustion gases. Prog Energy Combust Sci 60, 132–176 (2017)

    Google Scholar 

  21. L. Ma, K.-P. Cheong, H. Ning, W. Ren, An improved study of the uniformity of laminar premixed flames using laser absorption spectroscopy and CFD simulation. Exp Therm Fluid Sci 112, 110013 (2020)

    Google Scholar 

  22. A. Farooq, J.B. Jeffries, R.K. Hanson, In situ combustion measurements of H2O and temperature near 2.5 µm using tunable diode laser absorption. Meas Sci Technol 19, 75604 (2008)

    Google Scholar 

  23. C.H. Smith, C.S. Goldenstein, R.K. Hanson, A scanned-wavelength-modulation absorption-spectroscopy sensor for temperature and H2O in low-pressure flames. Meas Sci Technol 25, 115501 (2014)

    ADS  Google Scholar 

  24. Z. Wang, P.F. Fu, X. Chao, Baseline reduction algorithm for direct absorption spectroscopy with interference features. Meas Sci Technol 31, 035202 (2020)

    ADS  Google Scholar 

  25. X. Liu, G. Zhang, Y. Huang, Y. Wang, F. Qi, Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm. Appl Phys B 124, 61 (2018). 

  26. Q. Wu, F. Wang, M. Li, J. Yan, K. Cen, Simultaneous in-situ measurement of soot volume fraction, H2O concentration, and temperature in an ethylene/air premixed flame using tunable diode laser absorption spectroscopy. Combust Sci Technol 189, 1571–1590 (2017)

    Google Scholar 

  27. H. Cui, F. Wang, Q. Huang, J. Yan, K. Cen, Multiparameter measurement in ethylene diffusion flame based on time-division multiplexed tunable diode laser absorption spectroscopy. IEEE Photonics J 11, 1–12 (2019)

    Google Scholar 

  28. A. Sepman, Y. Ögren, Z. Qu, H. Wiinikka, F.M. Schmidt, Tunable diode laser absorption spectroscopy diagnostics of potassium, carbon monoxide, and soot in oxygen-enriched biomass combustion close to stoichiometry. Energy Fuels 33, 11795–11803 (2019)

    Google Scholar 

  29. Y. Ögren, M. Gullberg, J. Wennebro, A. Sepman, P. Tóth, H. Wiinikka, Influence of oxidizer injection angle on the entrained flow gasification of torrefied wood powder. Fuel Process Technol 181, 8–17 (2018)

    Google Scholar 

  30. A. Sepman, E. Thorin, Y. Ögren, C. Ma, M. Carlborg, J. Wennebro et al., Laser-based detection of methane and soot during entrained-flow biomass gasification. Combust Flame 237, 111886 (2022)

    Google Scholar 

  31. Y. Wang, S.H. Chung, Soot formation in laminar counterflow flames. Prog Energy Combust Sci 74, 152–238 (2019)

    Google Scholar 

  32. D.X. Du, R.L. Axelbaum, C.K. Law, The influence of carbon dioxide and oxygen as additives on soot formation in diffusion flames. Symp Combust 23, 1501–1507 (1991)

    Google Scholar 

  33. M. Sirignano, A. D’Anna, The role of CO2 dilution on soot formation and combustion characteristics in counter-flow diffusion flames of ethylene. Exp Therm Fluid Sci 114, 110061 (2020)

    Google Scholar 

  34. N.M. Mahmoud, F. Yan, M. Zhou, L. Xu, Y. Wang, Coupled effects of carbon dioxide and water vapor addition on soot formation in ethylene diffusion flames. Energy Fuels 33, 5582–5596 (2019)

    Google Scholar 

  35. Y. Wang, S.H. Chung, Formation of soot in counterflow diffusion flames with carbon dioxide dilution. Combust Sci Technol 188, 805–817 (2016)

    Google Scholar 

  36. F.S. Liu, H.S. Guo, G.J. Smallwood, Ömer L. Gülder, The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: implications for soot and NOx formation. Combust Flame 125, 778–787 (2001)

    Google Scholar 

  37. C. Zhang, A. Atreya, K. Lee, Sooting structure of methane counterflow diffusion flames with preheated reactants and dilution by products of combustion. Symp (Int) Combust 24, 1049–1057 (1992)

    Google Scholar 

  38. D. Wen, Y. Wang, Spatially and temporally resolved temperature measurements in counterflow flames using a single interband cascade laser. Opt Express. 28, 37879–37902 (2020)

    ADS  Google Scholar 

  39. R.K. Hanson, R.M. Spearrin, C.S. Goldenstein, Spectroscopy and optical diagnostics for gases (Springer, Switzerland, 2016)

    Google Scholar 

  40. W. Cai, C.F. Kaminski, Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows. Prog Energy Combust Sci 59, 1–31 (2017)

    Google Scholar 

  41. C. Liu, L. Xu, Z. Cao, H. McCann, Reconstruction of axisymmetric temperature and gas concentration distributions by combining fan-beam TDLAS with onion-peeling deconvolution. IEEE Trans Instrum Meas 63, 3067–3075 (2014)

    Google Scholar 

  42. C. Liu, Z. Cao, F. Li, Y. Lin, L. Xu, Flame monitoring of a model swirl injector using 1D tunable diode laser absorption spectroscopy tomography. Meas Sci Technol 28, 054002 (2017)

    ADS  Google Scholar 

  43. C. Liu, L. Xu, F. Li, Z. Cao, S.A. Tsekenis, H. McCann, Resolution-doubled one-dimensional wavelength modulation spectroscopy tomography for flame flatness validation of a flat-flame burner. Appl Phys B 120, 407–416 (2015)

    ADS  Google Scholar 

  44. C. Wei, D.I. Pineda, C.S. Goldenstein, R.M. Spearrin, Tomographic laser absorption imaging of combustion species and temperature in the mid-wave infrared. Opt Express 26, 20944–20951 (2018)

    ADS  Google Scholar 

  45. R.J. Tancin, R.M. Spearrin, C.S. Goldenstein, 2D mid-infrared laser-absorption imaging for tomographic reconstruction of temperature and carbon monoxide in laminar flames. Opt Express 27, 14184–14198 (2019)

    ADS  Google Scholar 

  46. L. Ma, H. Ning, J. Wu, W. Ren, In situ flame temperature measurements using a mid-infrared two-line H2O laser-absorption thermometry. Combust Sci Technol 190, 393–408 (2018)

    Google Scholar 

  47. L. Ma, H. Ning, J. Wu, K.-P. Cheong, W. Ren, Characterization of temperature and soot volume fraction in laminar premixed flames: laser absorption/extinction measurement and two-dimensional computational fluid dynamics modeling. Energy Fuels 32, 12962–12970 (2018)

    Google Scholar 

  48. M. Liu, M. Hui, M. Liu, Y. Zhao, L. Dong, H. Wu, X. Liu, Z. Zhao, Y. Feng, D. Chen, L. Yang, J. Zhao. Oxygen saturation detection aided with the theory of lock-in amplifier. Proc. SPIE 9216, Optics and Photonics for Information Processing VIII, 921605 San Diego, California, 19 September 2014

  49. Y. Chen, Z. Li, Y. Song, A. He, Extension of the gladstone-dale equation for flame flow field diagnosis by optical computerized tomography. Appl Opt. 48, 2485–2490 (2009)

    ADS  Google Scholar 

  50. W. Ren, H. Liu, Study on the effect of compressibility and knudsen number on aero optics in supersonic/hypersonic flows. 42nd AIAA Fluid Dynamics Conference and Exhibit. New Orleans, Louisiana. 25–28 June 2012

  51. G. Guo, H. Liu, B. Zhang, Aero-optical effects of an optical seeker with a supersonic jet for hypersonic vehicles in near space. Appl Opt 55, 4741–4751 (2016)

    ADS  Google Scholar 

  52. P. Jiang, M. Zhou, D. Wen, Y. Wang, An experimental multiparameter investigation on the thermochemical structures of benchmark ethylene and propane counterflow diffusion flames and implications to their numerical modeling. Combust Flame 234, 111622 (2021)

    Google Scholar 

  53. Y. Wang, A. Raj, S.H. Chung, A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames. Combust Flame 160, 1667–1676 (2013)

    Google Scholar 

  54. H. Wang, X. You, A.V. Joshi, S.G. Davis, A. Laskin, F. Egolfopoulos, C.K. Law, USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds. http://ignis.usc.edu/USC_Mech_II.htm. Accessed 3 March 2022

  55. Y. Zhang, Y. Li, L. Wang, P. Liu, R. Zhan, Z. Huang, L. He, Investigation on the LIF spectrum superposition of gas-phase PAH mixtures at elevated temperatures: potential for the analysis of PAH LIF spectra in sooting flames. Appl Phys B 125, 72 (2019). 

    Article  Google Scholar 

  56. P. Liu, Y. Zhang, L. Wang, B. Tian, B. Guan, D. Han, Z. Huang, L. He, Chemical mechanism of exhaust gas recirculation on polycyclic aromatic hydrocarbons formation based on laser-induced fluorescence measurement. Energy Fuels 32, 7112–7124 (2018)

    Google Scholar 

  57. W. Wang, L. Xu, J. Yan, Y. Wang, Temperature dependence of the fuel mixing effect on soot precursor formation in ethylene-based diffusion flames. Fuel 267, 117121 (2020)

    Google Scholar 

  58. R.S. Barlow, A.N. Karpetis, J.H. Frank, J.Y. Chen, Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames. Combust Flame 127, 2102–2118 (2001)

    Google Scholar 

  59. L. Xu, F. Yan, M. Zhou, Y. Wang, An experimental and modeling study on sooting characteristics of laminar counterflow diffusion flames with partial premixing. Energy 218, 119479 (2021)

    Google Scholar 

  60. K.T. Kang, J.Y. Hwang, S.H. Chung, W. Lee, Soot zone structure and sooting limit in diffusion flames: comparison of counterflow and co-flow flames. Combust Flame 109, 266–281 (1997)

    Google Scholar 

  61. L. Xu, F. Yan, M. Zhou, Y. Wang, S.H. Chung, Experimental and soot modeling studies of ethylene counterflow diffusion flames: non-monotonic influence of the oxidizer composition on soot formation. Combust Flame 197, 304–318 (2018)

    Google Scholar 

  62. C.A. Hoerlle, F.M. Pereira, Effects of CO2 addition on soot formation of ethylene non-premixed flames under oxygen enriched atmospheres. Combust Flame 203, 407–423 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (51976142, 52106221), Fundamental Research Funds for the Central Universities (WUT:2021IVA016), and Startup funding of Wuhan University of Technology (40120607). We also thank Dr. Xunchen Liu from Shanghai Jiaotong University for providing the custom made etalon that is used in the present work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liuhao Ma or Yu Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 205 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, G., Ma, L., Wen, D. et al. Simultaneous measurements of temperature, CO2 concentration and soot volume fraction in counterflow diffusion flames using a single mid-infrared laser. Appl. Phys. B 128, 62 (2022). https://doi.org/10.1007/s00340-022-07784-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07784-0

Navigation