Skip to main content
Log in

On the assessment of de-noising algorithms in digital holographic interferometry and related approaches

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

As a general rule, the development of specific processing algorithms requires to accurately simulate data of interest by generating it as close as possible to the reality. In digital holographic interferometry and related approaches, the experimental phase data that are used for metrology purposes are corrupted by the speckle decorrelation noise. Thus, they require to be processed with advanced algorithms. To check the performances of de-noising algorithms before applying to real experimental data, simulations have to be carried out to provide quantitative errors and other related metrics of those performances. In litterature, many published papers dealing with the problem of phase de-noising in digital holographic interferometry consider Gaussian statistics and the hypothesis of noise stationarity, for simulating test data. However, considering the point spread function of digital holographic imaging systems, the noise in the phase data does not follow the Gaussian statistics. This means that considering Gaussian noise in data simulations is to make a big mistake on the nature of the noise in the holographic system. Therefore, in this paper, one aims at demonstrating that the Gaussian statistics are not well appropriated for simulating noise in holography, because such an approach systematically overestimates the performances of the algorithms. Then, using appropriate metrics such as mean standard deviation error, quality index, and peak-signal-to-noise-ratio, the paper demonstrates that the realistic speckle noise must be taken into account and correctly simulated for benchmarking overall algorithm performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Picart (ed.), New Techniques in Digital Holography (Wiley, New York, 2015)

  2. T.M. Biewer, J.C. Sawyer, C.D. Smith, C.E. Thomas, Rev. Sci. Instrum. 89, 10J123 (2018)

    Article  Google Scholar 

  3. M. Fratz, T. Beckmann, J. Anders, A. Bertz, M. Bayer, T. Gießler, C. Nemeth, D. Carl, Appl. Opt. 58, G120–G126 (2019)

    Article  Google Scholar 

  4. M.P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, D. Doyle, Appl. Opt. 52, A102–A116 (2013)

    Article  Google Scholar 

  5. E. Meteyer, F. Foucart, M. Secail-Geraud, P. Picart, C. Pezerat, Mech. Syst. Signal Process. 164, 108215 (2022)

    Article  Google Scholar 

  6. L. Lagny, M. Secail-Geraud, J. Le Meur, S. Montresor, K. Heggarty, C. Pezerat, P. Picart, J. Sound Vib. 461, 114925 (2019)

    Article  Google Scholar 

  7. L. Valzania, Y. Zhao, L. Rong, D. Wang, M. Georges, E. Hack, P. Zolliker, Appl. Opt. 58, G256–G275 (2019)

    Article  Google Scholar 

  8. V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, P. Ferraro, Strategies for reducing speckle noise in digital holography. Light Sci. Appl. 7, 48 (2018)

    Article  ADS  Google Scholar 

  9. V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, P. Ferraro, Light. Sci. Appl. 5, e16142 (2016)

    Article  ADS  Google Scholar 

  10. J.W. Goodman, Speckle Phenomena in Optics: Theory and Applications, 2nd edn (SPIE, 2007)

  11. M. Piniard, B. Sorrente, G. Hug, P. Picart, Theoretical analysis of surface-shape-induced decorrelation noise in multi-wavelength digital holography. Opt. Express 29, 14720–14735 (2021)

    Article  ADS  Google Scholar 

  12. S. Montresor, P. Picart, Quantitative appraisal for noise reduction in digital holographic phase imaging. Opt. Express 24, 14322–14343 (2016)

    Article  ADS  Google Scholar 

  13. E. Meteyer, F. Foucart, C. Pezerat, P. Picart, Modeling of speckle decorrelation in digital Fresnel holographic interferometry. Opt. Express 29, 36180–36200 (2021)

    Article  ADS  Google Scholar 

  14. M. Karray, P. Slangen, P. Picart, Comparison between digital Fresnel holography and digital image-plane holography: the role of the imaging aperture. Exp. Mech. 52, 1275–1286 (2012)

    Article  Google Scholar 

  15. K. Yan, Y. Yu, C. Huang, L. Sui, Q. Kemao, A. Asundi, Fringe pattern enoising based on deep learning. Opt. Commun. 437, 148–152 (2019)

    Article  ADS  Google Scholar 

  16. Z. Cheng, D. Liu, Y. Yang, T. Ling, X. Chen, L. Zhang, J. Bai, Y. Shen, L. Miao, W. Huang, Practical phase unwrapping of interferometric fringes based on unscented Kalman filter technique. Opt. Express 23, 32337–32349 (2015)

    Article  ADS  Google Scholar 

  17. J. Villa, J. Quiroga, I. De la Rosa, Regularized quadratic cost function for oriented fringe-pattern filtering. Opt. Lett. 34, 1741–1743 (2009)

    Article  ADS  Google Scholar 

  18. X. Chen, C. Tang, W. Xu, Y. Su, K. Su, General construction of transform-domain filters, filtering methods for electronic speckle pattern interferometry, and comparative analyses. Appl. Opt. 55(9), 2214–2222 (2016)

    Article  ADS  Google Scholar 

  19. Q. Kemao, Windowed Fourier transform for fringe pattern analysis. Appl. Opt. 43, 2695–2702 (2004)

    Article  ADS  Google Scholar 

  20. R.C. Gonzales, R.E. Woods, Digital Image Processing, 3rd edn. (Prentice Hall, Upper Saddle River, 2008)

    Google Scholar 

  21. V.S. Frost, J.A. Stiles, K.S. Shanmugan, J.C. Holtzman, A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 4, 157–165 (1982)

    Article  Google Scholar 

  22. J.S. Lee, Digital image enhancement and noise filtering by using local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 2, 165–1658 (1980)

    Article  ADS  Google Scholar 

  23. P. Perona, J. Malik, Space scale and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Int. 12(7), 629–639 (1990)

    Article  Google Scholar 

  24. G. Gerig, O. Kubler, R. Kikinis, F.A. Jolesz, Nonlinear anisotropic filtering of MRI data. IEEE Trans. Med. Imaging 11(2), 221–232 (1992)

    Article  Google Scholar 

  25. S. Mallat, A Wavelet Tour of Signal Processing (Academic Press, New York, 1999)

    MATH  Google Scholar 

  26. D.L. Donoho, De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41, 613–627 (1995)

    Article  MathSciNet  Google Scholar 

  27. J.-L. Starck, E.J. Candès, D.L. Donoho, The curvelet transform for image denoising. IEEE Trans. Image Process. 11, 670–684 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  28. M.N. Do, M. Vetterli, The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Proc. 14(12), 2091–2106 (2005)

    Article  ADS  Google Scholar 

  29. A. Buades, B. Coll, J. Morel, A non-local algorithm for image denoising. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2(2), 60–65 (2005)

    MATH  Google Scholar 

  30. A. Uzan, Y. Rivenson, A. Stern, Speckle denoising in digital holography by nonlocal means filtering. Appl. Opt. 52(1), 195–200 (2013)

    Article  ADS  Google Scholar 

  31. K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denoising with block-matching and 3D filtering. In Proceedings of SPIE 6064A-30 (2006)

  32. P. Memmolo, M. Iannone, M. Ventre, P.A. Netti, A. Finizio, M. Paturzo, P. Ferraro, Quantitative phase maps denoising of long holographic sequences by using SPADEDH algorithm. Appl. Opt. 52, 1453–1460 (2013)

    Article  ADS  Google Scholar 

  33. S. Montresor, M. Tahon, A. Laurent, P. Picart, Computational de-noising based on deep learning for phase data in digital holographic interferometry. APL Photonics 5, 030802 (2020)

    Article  ADS  Google Scholar 

  34. S. Montresor, M. Tahon, A. Laurent, P. Picart, Deep learning speckle decorrelation de-noising for wide-field optical metrology. Proc. SPIE 11352, 113520R (2020)

    Google Scholar 

  35. M. Tahon, S. Montresor, P. Picart, Towards reduced CNNs for de-noising phase images corrupted with speckle noise. Photonics 8, 255 (2021)

    Article  Google Scholar 

  36. I. Selesnick, R.G. Baraniuk, N.G. Kingsbury, The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22(6), 123–151 (2005)

    Article  ADS  Google Scholar 

  37. Z. Wang, A.C. Bovik, L. Lu, Why is image quality assessment so difficult? Proc. IEEE ICASSP 4, 3313–3316 (2002)

    Google Scholar 

  38. S. Montrésor, P. Picart, M. Karray, Reference-free metric for quantitative noise appraisal in holographic phase measurements. J. Opt. Soc. Am. A 35, A53–A60 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Picart.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montrésor, S., Picart, P. On the assessment of de-noising algorithms in digital holographic interferometry and related approaches. Appl. Phys. B 128, 59 (2022). https://doi.org/10.1007/s00340-022-07783-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07783-1

Navigation