Skip to main content
Log in

Analysis of the wavefront aberrations based on neural networks processing of the interferograms with a conical reference beam

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Recently, intelligent data analysis and neural networks are increasingly used to detect the wavefront by interferograms and digital holograms. In this case, there is significant freedom to choose the structure of the reference beam. In this paper, a comparative study of the effectiveness of the neural network was performed to solve the problem of the wavefront aberration recognition based on off-axis and inline schemes of digital holography with a plane and conical reference wavefront, respectively. The feature of the inline digital holograms with the conical wavefront compared to the off-axis is the invariance of their structure to the rotation of the wavefront at some angle. In addition, a numerical analysis of the sensitivity of the types of digital holograms under consideration to changes in the wavefront for a different level of aberration showed relatively better characteristics for the average level of aberration, when it is difficult to apply detecting methods based on the Shack-Hartmann sensors or matched filtering. These features of inline digital holograms with a conical reference wavefront made it possible to increase the recognition efficiency for types and levels of aberrations using neural networks. As a result, the average absolute recognition error for model interferogram decreases more than three times. The results for the experimental conical and linear interferograms turned out to be quite close because of the sensitivity of the conical wavefront to the alignment of the optical system. Moreover, the neural network trained on a more diverse experimental data set, which contains natural distortions of image registration, gives an increase in the average recognition accuracy for linear-type interferograms. Thus, in the future, it is reasonable to consider the combined use of various types of interferograms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Malacara, M. Servín, Z. Malacara, Interferogram Analysis for Optical Testing, second ed. (Taylor & Francis Group, LLC, Boca Raton, FL, 2005); ISBN 978–1–57444–682–1

  2. G. Pedrini, I. Alekseenko, G. Jagannathan, M. Kempenaars, G. Vayakis, W. Osten, Digital holography for erosion monitoring inside the ITER Tokamak. Proc. SPIE 10677, 392–397 (2018). https://doi.org/10.1117/12.2307333

    Article  Google Scholar 

  3. K.G. Carpenter, C.J. Schrijver, M. Karovska, The Stellar Imager (SI) project: A deep space UV/Optical Interferometer (UVOI) to observe the Universe at 0.1 milli-arcsec angular resolution. Astrophys. Space Sci. 320 (1–3), 217–223 (2009). https://doi.org/10.1007/s10509-008-9815-6

  4. K.U. Schreiber, J.N. Hautmann, A. Velikoseltsev, J. Wassermann, H. Igel, J. Otero, F. Vernon, J.-P.R. Wells, Ring laser measurements of ground rotations for seismology. Bull. Seismol. Soc. Am. 99(2B), 1190–1198 (2009). https://doi.org/10.1785/0120080171

    Article  Google Scholar 

  5. L. Guanming, Y. Toyohiko, Generalized phase-shifting interferometry. J. Opt. Soc. Am. A 8(5), 822–827 (1991). https://doi.org/10.1364/JOSAA.8.000822

    Article  Google Scholar 

  6. T.H. Nguyen, M.E. Kandel, M. Rubessa, M.B. Wheeler, G. Popescu, Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nat. Commun. 8(1), 1–9 (2017). https://doi.org/10.1038/s41467-017-00190-7

    Article  Google Scholar 

  7. I. Trumper, B.T. Jannuzi, D.W. Kim, Emerging technology for astronomical optics metrology. Opt. Laser Eng. 104, 22–31 (2018). https://doi.org/10.1016/j.optlaseng.2017.09.009

    Article  Google Scholar 

  8. A.V. Belashov, N.V. Petrov, Improvement of rough surfaces height map reconstruction accuracy in tilt angle illumination digital holography. Opt. Eng. 59(10), 1 (2020). https://doi.org/10.1117/1.OE.59.10.102414

    Article  Google Scholar 

  9. G. Pedrini, H.J. Tiziani, Digital double-pulse holographic interferometry using Fresnel and image plane holograms. Measurement 15(4), 251–260 (1995). https://doi.org/10.1016/0263-2241(95)00009-A

    Article  ADS  Google Scholar 

  10. M.A.S. El-Din, H.H. Wahba, Investigation of refractive index profile and mode field distribution of optical fibers using digital holographic phase shifting interferometric method. Opt. Commun. 284(16), 3846–3854 (2011). https://doi.org/10.1016/j.optcom.2011.04.037

    Article  ADS  Google Scholar 

  11. J. Lobera, N. Andrés, M.P. Arroyo, Digital speckle pattern interferometry as a holographic velocimetry technique. Meas. Sci. Technol. 15(4), 718–724 (2004). https://doi.org/10.1088/0957-0233/15/4/015

    Article  ADS  Google Scholar 

  12. A.V. Belashov, N.V. Petrov, I.V. Semenova, Processing classical holographic interferograms by algorithms of digital hologram reconstruction. Tech. Phys. Lett. 41(7), 713–716 (2015). https://doi.org/10.1134/S1063785015070184

    Article  ADS  Google Scholar 

  13. V. Katkovnik, I.A. Shevkunov, N.V. Petrov, K. Egiazarian, Wavefront reconstruction in digital off-axis holography via sparse coding of amplitude and absolute phase. Opt. Lett. 40(10), 2417–2420 (2015). https://doi.org/10.1364/OL.40.002417

    Article  ADS  Google Scholar 

  14. D. Doblas, G. Hincapie-Zuluaga, M. Saavedra, J. Martínez-Corral, Garcia-Sucerquia, Physical compensation of phase curvature in digital holographic microscopy by use of programmable liquid lens. Appl. Opt. 54(16), 5229–5233 (2015). https://doi.org/10.1364/AO.54.005229

    Article  ADS  Google Scholar 

  15. N.V. Petrov, S.E. Putilin, A.A. Chipegin, Time-resolved image plane off-axis digital holography. Appl. Phys. Lett. 110(6), 161107 (2017). https://doi.org/10.1063/1.4981899

    Article  ADS  Google Scholar 

  16. H.A. Ilhan, M. Doǧar, M. Özcan, Fast autofocusing in digital holography using scaled holograms. Opt. Commun. 287, 81–84 (2013). https://doi.org/10.1016/j.optcom.2012.09.036

    Article  ADS  Google Scholar 

  17. A.V. Belashov, N.V. Petrov, I.V. Semenova, O.S. Vasyutinskii, Digital holographic micro-interferometry of nonradiative transitions in biological specimens. Proc. SPIE 9529, 95290G (2015). https://doi.org/10.1117/12.2184900

    Article  ADS  Google Scholar 

  18. A.V. Belashov, N.V. Petrov, I.V. Semenova, Digital off-axis holographic interferometry with simulated wavefront. Opt. Express 22(23), 28363–28376 (2014). https://doi.org/10.1364/OE.22.028363

    Article  ADS  Google Scholar 

  19. Á.F. Doval, C. Trillo, J.C. López-Vázquez, J.L. Fernández, Propagation of the measurement uncertainty in Fourier transform digital holographic interferometry. Opt. Eng. 55(12), 121709 (2016). https://doi.org/10.1117/1.OE.55.12.121709

    Article  ADS  Google Scholar 

  20. P. Hariharan, B.F. Oreb, T. Eiju, Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm. Appl. Opt. 26(13), 2504–2506 (1987). https://doi.org/10.1364/AO.26.002504

    Article  ADS  Google Scholar 

  21. I. Yamaguchi, T. Zhang, Phase-shifting digital holography. Opt. Lett. 22(16), 1268–1270 (1997). https://doi.org/10.1364/OL.22.001268

    Article  ADS  Google Scholar 

  22. M. Takeda, Fourier fringe analysis and its application to metrology of extreme physical phenomena: a review [Invited]. Appl. Opt. 52(1), 20 (2013). https://doi.org/10.1364/AO.52.000020

    Article  ADS  Google Scholar 

  23. K. Qian, Two-dimensional windowed Fourier transform for fringe pattern analysis: Principles, applications and implementations. Opt Laser Eng 45(2), 304–317 (2007). https://doi.org/10.1016/j.optlaseng.2005.10.012

    Article  Google Scholar 

  24. C.S. Seelamantula, N. Pavillon, C. Depeursinge, M. Unser, Local demodulation of holograms using the Riesz transform with application to microscopy. J. Opt. Soc. Am. A 29(10), 2118–2129 (2012). https://doi.org/10.1364/JOSAA.29.002118

    Article  ADS  Google Scholar 

  25. K. Qian, X. Wu, A. Anand, Grating-based real-time polarization phase-shifting interferometry: error analysis. Appl. Opt. 41(13), 2448–2453 (2002). https://doi.org/10.1364/AO.41.002448

    Article  Google Scholar 

  26. B. Chen, C. Basaran, Statistical phase-shifting step estimation algorithm based on the continuous wavelet transform for high-resolution interferometry metrology. Appl. Opt. 50(4), 586–593 (2010). https://doi.org/10.1364/AO.50.000586

    Article  ADS  Google Scholar 

  27. V. Katkovnik, I. Shevkunov, N.V. Petrov, K. Egiazarian, High-accuracy off-axis wavefront reconstruction from noisy data: local least square with multiple adaptive windows. Opt. Express 24(22), 25068–25083 (2016). https://doi.org/10.1364/OE.24.025068

    Article  ADS  Google Scholar 

  28. V. Cazac, A. Meshalkin, E. Achimova, V. Abashkin, V. Katkovnik, I. Shevkunov, D. Claus, G. Pedrini, Surface relief and refractive index gratings patterned in chalcogenide glasses and studied by off-axis digital holography. Appl. Opt. 57(3), 507–513 (2018). https://doi.org/10.1364/AO.57.000507

    Article  ADS  Google Scholar 

  29. M. Liebling, T. Blu, M. Unser, Complex-wave retrieval from a single off-axis hologram. J. Opt. Soc. Am. A 21(3), 367–377 (2004). https://doi.org/10.1364/JOSAA.21.000367

    Article  ADS  Google Scholar 

  30. Y. Awatsuji, M. Sasada, T. Kubota, Parallel quasi-phase-shifting digital holography. Appl. Phys. Lett. 85(6), 1069–1071 (2004). https://doi.org/10.1063/1.1777796

    Article  ADS  Google Scholar 

  31. T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, O. Matoba, High-speed phase imaging by parallel phase-shifting digital holography. Opt. Lett. 36(21), 4131–4133 (2011). https://doi.org/10.1364/OL.36.004131

    Article  ADS  Google Scholar 

  32. A.V. Chernykh, A.S. Ezerskii, A.O. Georgieva, N.V. Petrov, Study on object wavefront sensing in parallel phase-shifting camera with geometric phase lens. Proc. SPIE 11898, 118980X (2021). https://doi.org/10.1117/12.2602841

    Article  Google Scholar 

  33. D. Wang, Y. Yang, C. Chen, Y. Zhuo, Misalignment aberrations calibration in testing of high-numerical-aperture spherical surfaces. Appl. Opt. 50, 2024–2031 (2011). https://doi.org/10.1364/AO.50.002024

    Article  ADS  Google Scholar 

  34. I.A. Shevkunov, N.S. Balbekin, N.V. Petrov, Comparison of digital holography and iterative phase retrieval methods for wavefront reconstruction. Proc. SPIE 9271, 927128 (2014). https://doi.org/10.1117/12.2071469

    Article  Google Scholar 

  35. L. Chen, Z. Chen, R.K. Singh, R.V. Vinu, J. Pu, Increasing field of view and signal to noise ratio in the quantitative phase imaging with phase shifting holography based on the Hanbury Brown-Twiss approach. Opt. Laser Eng. 148, 106771 (2022). https://doi.org/10.1016/j.optlaseng.2021.106771

    Article  Google Scholar 

  36. A. Safrani, I. Abdulhalim, Real-time phase shift interference microscopy. Opt. Lett. 39(17), 5220–5223 (2014). https://doi.org/10.1364/OL.39.005220

    Article  ADS  Google Scholar 

  37. J. Zhong, J. Weng, Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry. Appl. Opt. 43(26), 4993–4998 (2004). https://doi.org/10.1364/AO.43.004993

    Article  ADS  Google Scholar 

  38. K. Assid, F. Alaoui, V. Dembele, S. Houmairi, A. Nassim, Normalized Hilbert Huang transform-NHHT applied to phase extraction in wavelet domain. Open Opt. J. 6, 9–13 (2012). https://doi.org/10.2174/1874328501206010009

    Article  Google Scholar 

  39. M. Liebling, T. Blu, E. Cuche, P. Marquet, C. Depeursinge, M. Unser, "A novel non-diffractive reconstruction method for digital holographic microscopy," in Proc IEEE International Symposium on Biomedical Imaging, 625–628 (2002); https://doi.org/10.1109/ISBI.2002.1029335

  40. V. Katkovnik, I. Shevkunov, N.V. Petrov, K. Egiazarian, Sparse approximations of phase and amplitude for wave field reconstruction from noisy data. Proc. SPIE 9508, 950802 (2015). https://doi.org/10.1117/12.2177657

    Article  Google Scholar 

  41. M. Servin, J.L. Marroquin, J.A. Quiroga, Regularized quadrature and phase tracking from a single closed-fringe interferogram. J. Opt. Soc. Am. A 21(3), 411–419 (2004). https://doi.org/10.1364/JOSAA.21.000411

    Article  ADS  Google Scholar 

  42. D. Wu, K.L. Boyer, Sign ambiguity resolution for phase demodulation in interferometry with application to prelens tear film analysis. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2807–2814 (2010); https://doi.org/10.1109/CVPR.2010.5540011

  43. K.G. Larkin, D.J. Bone, M.A. Oldfield, Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform. J. Opt. Soc. Am. A 18 (8), 1862–1870 (2001); https://doi.org/10.1364/JOSAA.18.001862

  44. H. Wang, K. Qian, Frequency guided methods for demodulation of a single fringe pattern. Opt. Express 17(17), 15118–15127 (2009). https://doi.org/10.1364/OE.17.015118

    Article  ADS  Google Scholar 

  45. P. Cheremkhin, N. Evtikhiev, V. Krasnov, V. Rodin, D. Rymov, R. Starikov, Machine learning methods for digital holography and diffractive optics. Procedia Comput. Sci. 169, 440–444 (2020). https://doi.org/10.1016/j.procs.2020.02.243

    Article  Google Scholar 

  46. S. Montresor, M. Tahon, A. Laurent, P. Picart, Computational de-noising based on deep learning for phase data in digital holographic interferometry. APL Photon. 5(3), 030802 (2020). https://doi.org/10.1063/1.5140645

    Article  ADS  Google Scholar 

  47. L. Zhang, S. Zhou, J. Li, B. Yu, Deep neural network based calibration for freeform surface misalignments in general interferometer. Opt. Express 27(23), 33709–33729 (2019). https://doi.org/10.1364/OE.27.033709

    Article  ADS  Google Scholar 

  48. G.E. Spoorthi, S. Gorthi, R.K.S.S. Gorthi, PhaseNet: A deep convolutional neural network for two-dimensional phase unwrapping. IEEE Signal Process. Lett. 26(1), 54–58 (2019). https://doi.org/10.1109/LSP.2018.2879184

    Article  ADS  Google Scholar 

  49. S. Feng, Q. Chen, G. Gu, T. Tao, L. Zhang, Y. Hu, W. Yin, C. Zuo, Fringe pattern analysis using deep learning. Adv. Photonics 1(2), 025001 (2019). https://doi.org/10.1117/1.AP.1.2.025001

    Article  ADS  Google Scholar 

  50. Y. Xue, S. Cheng, Y. Li, L. Tian, Reliable deep-learning-based phase imaging with uncertainty quantification. Optica 6, 618–629 (2019). https://doi.org/10.1364/OPTICA.6.000618

    Article  ADS  Google Scholar 

  51. K. Wang, M. Zhang, J. Tang, L. Wang, L. Hu, X. Wu, W. Li, J. Di, G. Liu, J. Zhao, Deep learning wavefront sensing and aberration correction in atmospheric turbulence. PhotoniX 2(1), 8 (2021). https://doi.org/10.1186/s43074-021-00030-4

    Article  Google Scholar 

  52. S. Feng, C. Zuo, Y. Hu, Y. Li, Q. Chen, Deep-learning-based fringe-pattern analysis with uncertainty estimation. Optica 8, 1507–1510 (2021). https://doi.org/10.1364/OPTICA.434311

    Article  ADS  Google Scholar 

  53. X. Liu, Z. Yang, J. Dou, Z. Liu, Fast demodulation of single-shot interferogram via convolutional neural network. Opt. Commun. 487, 126813 (2021). https://doi.org/10.1016/j.optcom.2021.126813

    Article  Google Scholar 

  54. X. Wang, Z. Nie, Y. Liang, J. Wang, T. Li, B. Jia, Recent advances on optical vortex generation. Nanophotonics 7(9), 1533–1556 (2018). https://doi.org/10.1515/nanoph-2018-0072

    Article  Google Scholar 

  55. Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, X. Yuan, Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 8, 90 (2019). https://doi.org/10.1038/s41377-019-0194-2

    Article  ADS  Google Scholar 

  56. K. Zhang, Y. Wang, Y. Yuan, S.N. Burokur, A review of orbital angular momentum vortex beams generation: from traditional methods to metasurfaces. Appl. Sci. 10(3), 1015 (2019). https://doi.org/10.3390/app10031015

    Article  Google Scholar 

  57. D.M. Fatkhiev, M.A. Butt, E.P. Grakhova, R.V. Kutluyarov, I.V. Stepanov, N.L. Kazanskiy, S.N. Khonina, V.S. Lyubopytov, A.K. Sultanov, Recent advances in generation and detection of orbital angular momentum optical beams—a review. Sensors 21, 4988 (2021). https://doi.org/10.3390/s21154988

    Article  ADS  Google Scholar 

  58. A.P. Porfirev, A.A. Kuchmizhak, S.O. Gurbatov, S. Juodkazis, S.N. Khonina, Yu.N. Kul’chin, Phase singularities and optical vortices in photonics, Phys. Usp. 8, 64 (2021); https://doi.org/10.3367/UFNe.2021.07.039028

  59. N.R. Heckenberg, R. McDuff, C.P. Smith, H. Rubinstein-Dunlop, M.J. Wegener, Laser beams with phase singularities. Opt. Quantum Electron. 24, S951–S962 (1992). https://doi.org/10.1007/BF01588597

    Article  Google Scholar 

  60. L. Janicijevic, S. Topuzoski, Fresnel and Fraunhofer diffraction of a Gaussian laser beam by fork-shaped gratings. J. Opt. Soc. Am. A 25(11), 2659–2669 (2008). https://doi.org/10.1364/JOSAA.25.002659

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. S. Pan, C. Pei, S. Liu, J. Wei, D. Wu, Z. Liu, Y. Yin, Y. Xia, J. Yin, Measuring orbital angular momentums of light based on petal interference patterns. OSA Continuum 1(2), 451–461 (2018). https://doi.org/10.1364/OSAC.1.000451

    Article  Google Scholar 

  62. P. Kumar, N.K. Nishchal, Self-referenced interference of laterally displaced vortex beams for topological charge determination. Opt. Commun. 459, 125000 (2020). https://doi.org/10.1016/j.optcom.2019.125000

    Article  Google Scholar 

  63. N.L. Kazanskiy, S.N. Khonina, S.V. Karpeev, A.P. Porfirev, Diffractive optical elements for multiplexing structured laser beams. Quantum Electron. 50(7), 629–635 (2020). https://doi.org/10.1070/QEL17276

    Article  ADS  Google Scholar 

  64. S.N. Khonina, S.V. Karpeev, M.A. Butt, Spatial-light-modulator-based multichannel data transmission by vortex beams of various orders. Sensors 21(9), 2988 (2021). https://doi.org/10.3390/s21092988

    Article  ADS  Google Scholar 

  65. Z. Wang, N. Zhang, X.-C. Yuan, High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication. Opt. Express 19(2), 482–492 (2011). https://doi.org/10.1364/OE.19.000482

    Article  ADS  Google Scholar 

  66. A. Trichili, K.-H. Park, M. Zghal, B.S. Ooi, M.-S. Alouini, Communicating using spatial mode multiplexing: potentials, challenges, and perspectives. IEEE Commun. Surv. Tutor. 21(4), 3175–3203 (2019). https://doi.org/10.1109/COMST.2019.2915981

    Article  Google Scholar 

  67. S. Cui, B. Xu, S. Luo, H. Xu, Z. Cai, Z. Luo, J. Pu, S. Chávez-Cerda, Determining topological charge based on an improved Fizeau interferometer. Opt. Express 27(9), 12774–12779 (2019). https://doi.org/10.1364/OE.27.012774

    Article  ADS  Google Scholar 

  68. P. Kumar, N.K. Nishchal, Self-referenced spiral interferogram using modified lateral shearing Mach-Zehnder interferometer. Appl. Opt. 58(25), 6827–6833 (2019). https://doi.org/10.1364/AO.58.006827

    Article  ADS  Google Scholar 

  69. S. Fürhapter, A. Jesacher, S. Bernet, M. Ritsch-Marte, Spiral interferometry. Opt. Lett. 30(15), 1953–1955 (2005). https://doi.org/10.1364/OL.30.001953

    Article  ADS  Google Scholar 

  70. J. Yu, S. Chen, F. Dang, X. Li, X. Shi, L. Ju, H. Wang, X. Xu, Z. Fan, The dynamic aberrations suppression of conformal optical system by wavefront coding. Opt. Commun. 463, 125121 (2020). https://doi.org/10.1016/j.optcom.2019.125121

    Article  Google Scholar 

  71. A. Mikš, P. Pokorný, Spherical aberration of an optical system and its influence on depth of focus. Appl. Opt. 56, 5099–5105 (2017). https://doi.org/10.1364/AO.56.005099

    Article  ADS  Google Scholar 

  72. S. Ryu, C. Joo, Design of binary phase filters for depth-of-focus extension via binarization of axisymmetric aberrations. Opt. Express 25, 30312–30326 (2017). https://doi.org/10.1364/OE.25.030312

    Article  ADS  Google Scholar 

  73. E. González-Amador, A. Padilla-Vivanco, C. Toxqui-Quitl, J.M. Olvera-Angeles, J. Arines, E. Acosta, Wavefront coding with Jacobi-Fourier phase masks. Proc. SPIE 11104, 1110405 (2019). https://doi.org/10.1117/12.2523611

    Article  Google Scholar 

  74. P. Senthilkumaran, J. Masajada, S. Sato, Interferometry with vortices. Int. J. Opt. 2012, 517591 (2012). https://doi.org/10.1155/2012/517591

    Article  Google Scholar 

  75. B.C. Platt, R. Shack, History and principles of Shack-Hartmann wavefront sensing. J. Refract. Surg. 17(5), S573–S577 (2001). https://doi.org/10.3928/1081-597X-20010901-13

    Article  Google Scholar 

  76. Y. Hongbin, Z. Guangya, C.F. Siong, L. Feiwen, W.A. Shouhua, Tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array. J. Micromech. Microeng. 18(10), 105017 (2008). https://doi.org/10.1088/0960-1317/18/10/105017

    Article  ADS  Google Scholar 

  77. A.P. Porfirev, S.N. Khonina, Experimental investigation of multi-order diffractive optical elements matched with two types of Zernike functions. Proc. SPIE 9807, 98070E (2016). https://doi.org/10.1117/12.2231378

    Article  ADS  Google Scholar 

  78. S.N. Khonina, S.V. Karpeev, A.P. Porfirev, Wavefront aberration sensor based on a multichannel diffractive optical element. Sensors 20(14), 3850 (2020). https://doi.org/10.3390/s20143850

    Article  ADS  Google Scholar 

  79. A. Tokovinin, S. Heathcote, DONUT: measuring optical aberrations from a single extrafocal image. Publ. Astron. Soc. Pac. 118(846), 1165–1175 (2006). https://doi.org/10.1086/506972

    Article  ADS  Google Scholar 

  80. I.M. Klebanov, A.V. Karsakov, S.N. Khonina, A.N. Davydov, K.A. Polyakov, Wave front aberration compensation of space telescopes with telescope temperature field adjustment. Computer Optics 41 (1), 30–36 (2017); https://doi.org/10.18287/0134-2452-2017-41-1-30-36

  81. S.W. Paine, J.R. Fienup, Machine learning for improved image-based wavefront sensing. Opt. Lett. 43(6), 1235–1238 (2018). https://doi.org/10.1364/OL.43.001235

    Article  ADS  Google Scholar 

  82. C. Zhang, M. Wang, Q. Chen, D. Wang, S. Wei, Two-step phase retrieval algorithm using single-intensity measurement. Int. J. Opt. 2018, 8643819 (2018). https://doi.org/10.1155/2018/8643819

    Article  Google Scholar 

  83. Y. Xu, D. He, Q. Wang, H. Guo, Q. Li, Z. Xie, Y. Huang, An improved method of measuring wavefront aberration based on image with machine learning in free space optical communication. Sensors 19(17), 3665 (2019). https://doi.org/10.3390/s19173665

    Article  ADS  Google Scholar 

  84. I.A. Rodin, S.N. Khonina, P.G. Serafimovich, S.B. Popov, Recognition of wavefront aberrations types corresponding to single Zernike functions from the pattern of the point spread function in the focal plane using neural networks. Comput. Opt. 44 (6), 923–930 (2020); https://doi.org/10.18287/2412-6179-CO-810

  85. P. Fischer, A. Dosovitskiy, T. Brox, Image orientation estimation with convolutional networks. In Book: German Conference on Pattern Recognition (Springer, Cham, 2015) 368–378; https://doi.org/10.1007/978-3-319-24947-6_30

  86. F. Chollet, Xception: Deep learning with depthwise separable convolutions. Proc. IEEE Conf. on Comp. Vis. Pattern. Recogn. 1251–1258 (2017); https://doi.org/10.1109/CVPR.2017.195

  87. S. Sathyan and S. R. Pulari, in Lect. Notes Comput. Vis. Biomech., pp. 193–204 (2018)

  88. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. (Cambridge University Press, Cambridge, UK, 1999)

    Book  Google Scholar 

  89. N. Bonod, J. Neauport, Diffraction gratings: from principles to applications in high-intensity lasers. Adv. Opt. Photonics 8(1), 156–199 (2016). https://doi.org/10.1364/AOP.8.000156

    Article  ADS  Google Scholar 

  90. S.N. Khonina, N.L. Kazanskiy, P.A. Khorin, M.A. Butt, Modern types of axicons: new functions and applications. Sensors 21(19), 6690 (2021). https://doi.org/10.3390/s21196690

    Article  ADS  Google Scholar 

  91. A.O. Georgieva, A.V. Belashov, N.V. Petrov, Complex wavefront manipulation and holographic correction based on digital micromirror device: a study of spatial resolution and discretization. Proc. SPIE 11294, 112940B (2020). https://doi.org/10.1117/12.2547702

    Article  Google Scholar 

  92. W.H. Lee, Binary synthetic holograms. Appl. Opt. 13(7), 1677–1682 (1974). https://doi.org/10.1364/AO.13.001677

    Article  ADS  Google Scholar 

  93. A. Georgieva, A. Ezerskii, A. Chernykh, N.V. Petrov, Numerical Displacement of Target Wavefront Formation Plane with DMD-based modulation and Geometric Phase Holographic Registration System. Atmospheric and Oceanic Optics Journal (2022) Accepted.

  94. A.V. Chernykh, A.S. Ezerskii, A.O. Georgieva, N. Petrov, V Study on object wavefront sensing in parallel phase-shifting camera with geometric phase lens. Proceedings SPIE 11898, 113–120 (2021). https://doi.org/10.1117/12.2602841

    Article  Google Scholar 

  95. K. Choi, K.-I. Joo, T.-H. Lee, H.-R. Kim, J. Yim, H. Do, S.-W. Min, Compact self-interference incoherent digital holographic camera system with real-time operation. Opt. Express 27, 4818–4833 (2019). https://doi.org/10.1364/OE.27.004818

    Article  ADS  Google Scholar 

  96. A. Georgieva, A. Belashov, N. Petrov, Optimization of DMD-based independent amplitude and phase modulation: a spatial resolution and quantization. 21 October 2021, PREPRINT (Version 1) available at Research Square (2021); https://doi.org/10.21203/rs.3.rs-966825/v1

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research under Grant No. 20-37-90129 (numerical modeling) and under Grant No. 19-29-09054 (data analysis), by the Ministry of Science and Higher Education of the Russian Federation under a government project of the Federal Research Center "Crystallography and Photonics" RAS No. 007-GZ/Ch3363/26 (theoretical research), by President of Russian Federation Grant No. MD-6101.2021.1.2 (experimental results).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. N. Khonina or N. V. Petrov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khonina, S.N., Khorin, P.A., Serafimovich, P.G. et al. Analysis of the wavefront aberrations based on neural networks processing of the interferograms with a conical reference beam. Appl. Phys. B 128, 60 (2022). https://doi.org/10.1007/s00340-022-07778-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07778-y

Navigation