Skip to main content
Log in

High stability in near-infrared spectroscopy: part 1, adapting clock techniques to optical feedback

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Optical feedback is an efficient way to narrow and stabilise semi-conductor lasers. As a step forward for ultra-stable, yet highly tunable sources, we developed a new prototype of a three-mirror V-shaped optical cavity (VCOF). It is made of a precisely machined Zerodur spacer, that holds 3 optical contacted mirrors forming a high finesse V-shaped cavity. This arrangement allows the resonant light to be sent back to the seeding laser, triggering a drastic narrowing of the emission linewidth well below the cavity mode width without the need for high-bandwidth active electronic lock of the laser on the cavity. Low expansion material and precise temperature control of the reference cavity leads to a source with Hz level frequency drift and 70 Hz-level emission linewidth at 215 THz. We discuss the benefits of this new prototype compared to its predecessor for high-sensitivity cavity ring down spectroscopy (CRDS). To serve this purpose, the frequency stabilised laser was characterised on short, mid and long time scales, using a high finesse etalon, a self referenced optical frequency comb and a long term saturated CRDS absorption Lamb dip measurement on water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Werle, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 54(2), 197 (1998)

    Article  ADS  Google Scholar 

  2. E. Kerstel, L. Gianfrani, Appl. Phys. B 92(3), 439 (2008)

    Article  ADS  Google Scholar 

  3. J.M. Hartmann, H. Tran, R. Armante, C. Boulet, A. Campargue, F. Forget, L. Gianfrani, I. Gordon, S. Guerlet, M. Gustafsson, J.T. Hodges, S. Kassi, D. Lisak, F. Thibault, G.C. Toon, Spectrosc. Radiat. Transf. (2018)

  4. J. Landsberg, D. Romanini, E. Kerstel, Opt. Lett. 39(7), 1795 (2014). https://doi.org/10.1364/OL.39.001795

    Article  ADS  Google Scholar 

  5. E.J. Steig, V. Gkinis, A.J. Schauer, S.W. Schoenemann, K. Samek, J. Hoffnagle, K.J. Dennis, S.M. Tan, Atmos. Meas. Tech. 7(8), 2421 (2014). https://doi.org/10.5194/amt-7-2421-2014

    Article  Google Scholar 

  6. T. Stoltmann, M. Casado, M. Daëron, A. Landais, S. Kassi, Anal. Chem. 89(19), 10129 (2017)

    Article  Google Scholar 

  7. M. Casado, Water stable isotopic composition on the East Antarctic Plateau: measurements at low temperature of the vapour composition, utilisation as an atmospheric tracer and implication for paleoclimate studies. Ph.D. thesis, Paris Saclay (2016)

  8. D. Romanini, P. Dupre, R. Jost, Vib. Spectrosc. 19(1), 93 (1999)

    Article  Google Scholar 

  9. P. Macko, R. Plašil, P. Kudrna, P. Hlavenka, V. Poterya, A. Pysanenko, G. Bánó, J. Glosık, Czechoslov. J. Phys. 52(2002 Suppl D), D695 (2002)

  10. R.V. Pound, Rev. Sci. Instrum. 17(11), 490 (1946)

    Article  ADS  Google Scholar 

  11. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B 31(2), 97 (1983)

    Article  ADS  Google Scholar 

  12. G.W. Truong, K.O. Douglass, S.E. Maxwell, R.D. van Zee, D.F. Plusquellic, J.T. Hodges, D.A. Long, Nat. Photon. 7, 532 (2013)

    Article  ADS  Google Scholar 

  13. J.T. Hodges, R. Ciuryło, Rev. Sci. Instrum. 76(2), 23112 (2005)

    Article  Google Scholar 

  14. V. Crozatier, F. De Seze, L. Haals, F. Bretenaker, I. Lorgeré, J.L. Le Gouët, Opt. Commun. 241(1–3), 203 (2004)

    Article  ADS  Google Scholar 

  15. J. Burkart, D. Romanini, S. Kassi, Opt. Lett. 38(12), 2062 (2013)

    Article  ADS  Google Scholar 

  16. P. Laurent, A. Clairon, C. Breant, IEEE J. Quantum. Electron. 25(6), 1131 (1989)

    Article  ADS  Google Scholar 

  17. J. Morville, S. Kassi, M. Chenevier, D. Romanini, Appl. Phys. B 80(8), 1027 (2005). https://doi.org/10.1007/s00340-005-1828-z

    Article  ADS  Google Scholar 

  18. F. Wei, F. Yang, X. Zhang, D. Xu, M. Ding, L. Zhang, D. Chen, H. Cai, Z. Fang, G. Xijia, Opt. Express 24(15), 17406 (2016)

    Article  ADS  Google Scholar 

  19. A.D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S.M. Foreman, M.M. Boyd, S. Blatt, J. Ye, Opt. Lett. 32(6), 641 (2007). https://doi.org/10.1364/OL.32.000641

    Article  ADS  Google Scholar 

  20. J. Millo, D.V. Magalhaes, C. Mandache, Y. Le Coq, E.M.L. English, P.G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, G. Santarelli, Phys. Rev. A 79(5), 53829 (2009)

    Article  ADS  Google Scholar 

  21. L. Rutkowski, A.C. Johansson, G. Zhao, T. Hausmaninger, A. Khodabakhsh, O. Axner, A. Foltynowicz, Opt. Express 25(18), 21711 (2017)

    Article  ADS  Google Scholar 

  22. S. Kassi, T. Stoltmann, M. Casado, M. Daëron, A. Campargue, J. Chem. Phys. 148(5), 54201 (2018). https://doi.org/10.1063/1.5010957

    Article  Google Scholar 

  23. R. Gotti, T. Sala, M. Prevedelli, S. Kassi, M. Marangoni, D. Romanini, J. Chem. Phys. 149(15), 154201 (2018). https://doi.org/10.1063/1.5046387

    Article  ADS  Google Scholar 

  24. J. Burkart, T. Sala, D. Romanini, M. Marangoni, A. Campargue, S. Kassi, J. Chem. Phys. 142(19), 191103 (2015)

    Article  ADS  Google Scholar 

  25. R.W. Fox, B.R. Washburn, N.R. Newbury, L. Hollberg, Appl. Opt. 44(36), 7793 (2005)

    Article  ADS  Google Scholar 

  26. J. Ye, Q. Li, S.Q. Peng, Y.L. Chen, Appl. Opt. 29(12), 1724 (1990)

    Article  ADS  Google Scholar 

  27. L.S. Ma, P. Jungner, J. Ye, J.L. Hall, Opt. Lett. 19(21), 1777 (1994)

    Article  ADS  Google Scholar 

  28. G. Di Domenico, S. Schilt, P. Thomann, Appl. Opt. 49(25), 4801 (2010). https://doi.org/10.1364/AO.49.004801

    Article  ADS  Google Scholar 

  29. N. Jobert, M. Casado, S. Kassi, Appl. Phys. B (2022). https://doi.org/10.1007/s00340-022-07779-x

    Article  Google Scholar 

  30. J. Burkart, S. Kassi, Appl. Phys. B 119(1), 97 (2015). https://doi.org/10.1007/s00340-014-5999-3

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research leading to these results received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/RC grant agreement number 306045, from the Agence Nationale de la Recherche (Grant ANR-13-JS060005), from Institut National des Sciences de l'Univers (LEFE/CHAT), from the Alexander von Humboldt fundation project DEAPICE. The authors acknowledge the technical support of Arnaud Dapoigny, David Terrier, Damien Capolongo and Hugues Guillet de Chatellus. The Zerodur spacer was built by Winlight Optics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Casado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casado, M., Stoltmann, T., Landais, A. et al. High stability in near-infrared spectroscopy: part 1, adapting clock techniques to optical feedback. Appl. Phys. B 128, 54 (2022). https://doi.org/10.1007/s00340-022-07774-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07774-2

Navigation