Skip to main content
Log in

Graphene-based tunable short band absorber for infrared wavelength

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The tunable graphene-based short band absorber has been numerically examined in this article. The absorption response of the proposed design has been analyzed with the variations of chemical potential, the radius of the resonator, width of the resonator, height of silver (Ag) resonator and the height of silica substrate. The proposed structure provides narrow band absorption and wideband response over an infrared wavelength of 1.5–1.6 μm. It has been reported that abortion amplitude was up to 99%. Metamaterial behavior was analyzed by the calculation of permittivity, permeability and refractive index. We have also investigated the absorption and reflectance response of 2 × 2 and 3 × 3 array-based structures. Comparative analysis with the previously published article is also represented. Thanks to its tunability, efficiency, and self-alignment, the proposed absorber can find application as a compact high-contrast filter in infrared optical systems. This research work can also apply to the different research filed of designing sensors, polarisers, modulators, and many more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J.C. Bose, On the rotation of plane of polarisation of electric wave by a twisted structure. Proc. R. Soc. Lond. 63, 146–152 (1898). https://doi.org/10.1098/rspl.1898.0019

    Article  Google Scholar 

  2. I. V. Lindell, A.H. Sihvola, J. Kurkijärvi, K.F. Lindman, The last Hertzian, and a Harbinger of electromagnetic chirality. IEEE Antennas Propag. Magn. 34, 24–30 (1992). https://doi.org/10.1109/74.153530

  3. W.E. Kock, Metallic delay lenses. Bell Syst. Tech. J. 27, 58–82 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01331.x

    Article  Google Scholar 

  4. D.R. Smith, S. Schultz, P. Markoš, C.M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, Phys. Rev. B Condens. Matter Mater. Phys. 65, 1–5 (2002). https://doi.org/10.1103/PhysRevB.65.195104

  5. T.J. Cui, R. Liu, D.R. Smith, Introduction to metamaterials, in: Metamaterials Theory, Des. Appl., Springer US, 2010: pp. 1–19. doi:https://doi.org/10.1007/978-1-4419-0573-4_1

  6. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of \(\epsilon\) and μ. Sov. Phys. Uspekhi. 10, 509–514 (1968). https://doi.org/10.1070/PU1968v010n04ABEH003699

    Article  ADS  Google Scholar 

  7. V. Sorathiya, V. Dave, Numerical study of a high negative refractive index based tunable metamaterial structure by graphene split ring resonator for far infrared frequency. Opt. Commun. 456, 124581 (2020). https://doi.org/10.1016/j.optcom.2019.124581

    Article  Google Scholar 

  8. R. Singh, E. Plum, W. Zhang, N.I. Zheludev, Highly tunable optical activity in planar achiral terahertz metamaterials. Opt. Express. 18, 13425 (2010). https://doi.org/10.1364/oe.18.013425

    Article  ADS  Google Scholar 

  9. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000). https://doi.org/10.1103/PhysRevLett.85.3966

    Article  ADS  Google Scholar 

  10. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science (80). 314, 977–980 (2006). doi:https://doi.org/10.1126/science.1133628

  11. H.F. Ma, T.J. Cui, Three-dimensional broadband ground-plane cloak made of metamaterials. Nat. Commun. 1, 1–6 (2010). https://doi.org/10.1038/ncomms1023

    Article  ADS  Google Scholar 

  12. T. Ergin, N. Stenger, P. Brenner, J.B. Pendry, M. Wegener, Three-dimensional invisibility cloak at optical wavelengths. Science (80). 328, 337–339 (2010). https://doi.org/10.1126/science.1186351

  13. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849

    Article  ADS  Google Scholar 

  14. L.A. Falkovsky, Optical properties of grapheme. J. Phys. Conf. Ser. 129 (2008). doi:https://doi.org/10.1088/1742-6596/129/1/012004.

  15. E. Pop, V. Varshney, A.K. Roy, Thermal properties of graphene: fundamentals and applications. MRS Bull. 37, 1273–1281 (2012). https://doi.org/10.1557/mrs.2012.203

    Article  Google Scholar 

  16. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008). https://doi.org/10.1016/j.ssc.2008.02.024

    Article  ADS  Google Scholar 

  17. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, F. Wang, Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011). https://doi.org/10.1038/nnano.2011.146

    Article  ADS  Google Scholar 

  18. X. He, S. Kim, Graphene-supported tunable waveguide structure in the terahertz regime. J. Opt. Soc. Am. B. 30, 2461 (2013). https://doi.org/10.1364/josab.30.002461

    Article  ADS  Google Scholar 

  19. G.W. Hanson, Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene, J. Appl. Phys. 103 (2008). doi:https://doi.org/10.1063/1.2891452

  20. L. Hu, H. Dai, F. Xi, Y. Tang, F. Cheng, Enhanced circular dichroism in hybrid graphene–metal metamaterials at the near-infrared region. Opt. Commun. 473, 125947 (2020). https://doi.org/10.1016/j.optcom.2020.125947

    Article  Google Scholar 

  21. M.S. Islam, J. Sultana, M. Biabanifard, Z. Vafapour, M.J. Nine, A. Dinovitser, C.M.B. Cordeiro, B.W.H. Ng, D. Abbott, Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing. Carbon N. Y. 158, 559–567 (2020). https://doi.org/10.1016/j.carbon.2019.11.026

    Article  Google Scholar 

  22. A. Alipour, A. Mir, A. Farmani, Ultra high-sensitivity and tunable dual-band perfect absorber as a plasmonic sensor. Opt. Laser Technol. 127, 106201 (2020). https://doi.org/10.1016/j.optlastec.2020.106201

    Article  Google Scholar 

  23. X. Jiang, Z. Zhang, K. Wen, G. Li, J. He, J. Yang, A triple-band hybridization coherent perfect absorber based on graphene metamaterial. Appl. Sci. 10, 1750 (2020). https://doi.org/10.3390/app10051750

    Article  Google Scholar 

  24. J. Zhang, Q. Hong, J. Zou, Y. He, X. Yuan, Z. Zhu, S. Qin, Fano-resonance in hybrid metal-graphene metamaterial and its application as mid-infrared plasmonic sensor. Micromachines. 11, 268 (2020). https://doi.org/10.3390/mi11030268

    Article  Google Scholar 

  25. H. Lin, X. Ye, X. Chen, Z. Zhou, Z. Yi, G. Niu, Y. Yi, Y. Hua, J. Hua, S. Xiao, Plasmonic absorption enhancement in graphene circular and elliptical disk arrays. Mater. Res. Express. 6, 045807 (2019). https://doi.org/10.1088/2053-1591/aafc3e

    Article  ADS  Google Scholar 

  26. L. Thomas, V. Sorathiya, S.K. Patel, T. Guo, Graphene-based tunable near-infrared absorber. Microw. Opt. Technol. Lett. 61, 1161–1165 (2019). https://doi.org/10.1002/mop.31712

    Article  Google Scholar 

  27. M. Freitag, W. Zhu, P. Avouris, F. Xia, H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nanotechnol. 7, 330–334 (2012). https://doi.org/10.1038/nnano.2012.59

    Article  ADS  Google Scholar 

  28. S. Xia, M. Qin, X. Zhai, Y. Xiang, L. Wang, Q. Lin, Tunable dual-band perfect absorber based on L-shaped graphene resonator. IEEE Photon. Technol. Lett. 31, 483–486 (2019). https://doi.org/10.1109/LPT.2019.2900269

    Article  ADS  Google Scholar 

  29. V. Sorathiya, S.K. Patel, D. Katrodiya, C. Jani, Metasurface based broadband solar absorber. Opt. Mater. (Amst) 89, 34–41 (2019). https://doi.org/10.1016/j.optmat.2018.12.057

    Article  ADS  Google Scholar 

  30. X. Han, H. Chen, H. Zhou, X. Jin, F. Wang, S. Huang, Z. Xie, L. Li, Coherent perfect absorber with independently tunable frequency based on multilayer graphene. Opt. Commun. 446, 44–50 (2019). https://doi.org/10.1016/j.optcom.2019.04.043

    Article  ADS  Google Scholar 

  31. L. Qi, C. Liu, Broadband multilayer graphene metamaterial absorbers. Opt. Mater. Express. 9, 1298 (2019). https://doi.org/10.1364/ome.9.001298

    Article  ADS  Google Scholar 

  32. I. Pockrand, Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings. Surf. Sci. 72, 577–588 (1978). https://doi.org/10.1016/0039-6028(78)90371-0

    Article  ADS  Google Scholar 

  33. J. Jiang, Q. Zhang, Q. Ma, S. Yan, F. Wu, X. He, Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials. Opt. Mater. Express. 5, 1962 (2015). https://doi.org/10.1364/ome.5.001962

    Article  ADS  Google Scholar 

  34. R.W. Christy, P.B. Johnson, Optical constants of the noble metals. Phys. Rev. B. 6, 4370–4379 (1972). https://doi.org/10.1016/j.susc.2018.02.016

    Article  ADS  Google Scholar 

  35. V.V. Khotkevich, S.V. Morozov, A.K. Geim, K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102, 10451–10453 (2005). https://doi.org/10.1073/pnas.0502848102

    Article  Google Scholar 

  36. J. Avila, M.C. Asensio, F. Bournel, J.-J. Gallet, E. Moreau, S. Godey, F.J. Ferrer, D. Vignaud, X. Wallart, Graphene growth by molecular beam epitaxy on the carbon-face of SiC. Appl. Phys. Lett. 97, 241907 (2010). https://doi.org/10.1063/1.3526720

    Article  ADS  Google Scholar 

  37. N. Petrone, C.R. Dean, I. Meric, A.M. van der Zande, P.Y. Huang, L. Wang, D. Muller, K.L. Shepard, J. Hone, Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. Nano Lett. 12, 2751–2756 (2012). https://doi.org/10.1021/nl204481s

    Article  ADS  Google Scholar 

  38. M.C. Sherrott, P.W.C. Hon, K.T. Fountaine, J.C. Garcia, S.M. Ponti, V.W. Brar, L.A. Sweatlock, H.A. Atwater, Experimental demonstration of >230° phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces. Nano Lett. 17, 3027–3034 (2017). https://doi.org/10.1021/acs.nanolett.7b00359

    Article  ADS  Google Scholar 

  39. T. Zou, B. Zhao, W. Xin, Y. Wang, B. Wang, X. Zheng, H. Xie, Z. Zhang, J. Yang, C.L. Guo, High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse, Light Sci. Appl. 9 (2020). doi:https://doi.org/10.1038/s41377-020-0311-2.

  40. H. Huang, H. Xia, Z. Guo, D. Xie, H. Li, Dynamically tunable dendritic graphene-based absorber with thermal stability at infrared regions. Appl. Phys. A Mater. Sci. Process. 124, 429 (2018). https://doi.org/10.1007/s00339-018-1844-6

    Article  ADS  Google Scholar 

  41. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000). https://doi.org/10.1103/PhysRevLett.84.4184

    Article  ADS  Google Scholar 

  42. J. Chen, S. Chen, P. Gu, Z. Yan, C. Tang, Z. Xu, B. Liu, Z. Liu, Electrically modulating and switching infrared absorption of monolayer graphene in metamaterials. Carbon N. Y. 162, 187–194 (2020). https://doi.org/10.1016/j.carbon.2020.02.032

    Article  Google Scholar 

  43. S. Ke, B. Wang, P. Lu, Plasmonic absorption enhancement in periodic cross-shaped graphene arrays, 2015 IEEE MTT-S Int. Microw. Work. Ser. Adv. Mater. Process. RF THz Appl. IEEE MTT-S IMWS-AMP 2015 - Proc. 23, 4810–4817 (2015). doi:https://doi.org/10.1109/IMWS-AMP.2015.7325015.

  44. Y. Avitzour, Y.A. Urzhumov, G. Shvets, Wide-angle infrared absorber based on a negative-index plasmonic metamaterial. Phys. Rev. B. 79, 045131 (2009). https://doi.org/10.1103/PhysRevB.79.045131

    Article  ADS  Google Scholar 

  45. Z.Q. Liu, H.B. Shao, G.Q. Liu, X.S. Liu, H.Q. Zhou, Y. Hu, X.N. Zhang, Z.J. Cai, G. Gu, Λ 3/20000 Plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing. Appl. Phys. Lett. 104, 2–6 (2014). https://doi.org/10.1063/1.4867028

    Article  Google Scholar 

  46. C. Wu, Y. Avitzour, G. Shvets, Ultra-thin wide-angle perfect absorber for infrared frequencies. Metamaterials Fundam. Appl. 7029, 70290W (2008). https://doi.org/10.1117/12.797208

    Article  Google Scholar 

  47. J. Chen, H. Nie, T. Zha, P. Mao, C. Tang, X. Shen, G.S. Park, Optical magnetic field enhancement by strong coupling in metamaterials. J. Light. Technol. 36, 2791–2795 (2018). https://doi.org/10.1109/JLT.2018.2822777

    Article  ADS  Google Scholar 

  48. W. Wang, F. Yan, S. Tan, H. Zhou, Y. Hou, Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators. Photonics Res. 5, 571 (2017). https://doi.org/10.1364/prj.5.000571

    Article  Google Scholar 

  49. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, X. Luo, Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt. Express. 19, 17413 (2011). https://doi.org/10.1364/OE.19.017413

    Article  ADS  Google Scholar 

  50. N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, Infrared perfect absorber and its application As plasmonic sensor. Nano Lett. 10, 2342 (2010)

    Article  ADS  Google Scholar 

  51. W. Zhu, X. Zhao, Metamaterial absorber with dendritic cells at infrared frequencies. J. Opt. Soc. Am. B. 26, 2382 (2009). https://doi.org/10.1364/josab.26.002382

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support received from Taif University Researchers Supporting Project Number (TURSP-2020/147), Taif university, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Nabih Zaki Rashed.

Ethics declarations

Conflict of interest

All the authors approved this submission and have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorathiya, V., Lavadiya, S., Thomas, L. et al. Graphene-based tunable short band absorber for infrared wavelength. Appl. Phys. B 128, 40 (2022). https://doi.org/10.1007/s00340-022-07763-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07763-5

Navigation