Skip to main content
Log in

A design of dual guided modes ring-based photonic crystal fiber supporting 170 + 62 OAM modes with large effective mode field area

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, a dual guided modes ring-based photonic crystal fiber (PCF) is designed in which two channels occupying different spatial positions are independent of each other and support up to 170 + 62 orbital angular momentum (OAM) modes in the dual guided modes regions. The designed PCF consists of a large central air hole, two high refractive index rings based on Schott glass (BAK1) and cladding. The characteristics of the designed PCF are analyzed by finite element method (FEM). The results show that the proposed PCF has a sufficiently large effective refractive index difference, relatively flat dispersion, large effective mode field area and low nonlinear effects with the wavelength range from 1.45 to 1.75 μm. The energy of the light field is mainly confined to two high refractive index rings with good isolation parameters. The values of most OAM modes purity in dual guided modes regions are greater than 0.9 and the mode quality of all eigenmodes is higher than 0.93 without phase distortion over the azimuth angle. Moreover, the confinement loss of all eigenmodes are below 1.4 × 10–8 dB m−1 where the lowest value is 1.56 × 10–12 dB m−1 at λ = 1.55 μm for HE13,1 mode. The proposed PCF has a large effective mode field area, up to 316.99 μm2. The nonlinear coefficient of HE and EH modes are less than 0.55 km−1 W−1 in the outer ring and less than 1.5 km−1 W−1 in the inner ring. In conclusion, the dual guided modes ring-based photonic crystal fiber has potential applications in large capacity data transmission in optical communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.J. Essiambre, G. Kramer, P.J. Winzer, G.J. Foschini, B. Goebel, Capacity limits of optical fiber networks. J. Lightwave Technol. 28, 662–701 (2010)

    Article  ADS  Google Scholar 

  2. D.J. Richardson, J.M. Fini, L.E. Nelson, Space-division multiplexing in optical fibres. Nat. Photonics 7, 354–362 (2013)

    Article  ADS  Google Scholar 

  3. P. Sillard, D. Molin, M. Bigot-Astruc, A. Amezcua-Correa, K.D. Jongh, F. Achten, 50 μm multimode fibers for mode division multiplexing. J. Lightwave Technol. 34, 1672–1677 (2016)

    Article  ADS  Google Scholar 

  4. L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992)

    Article  ADS  Google Scholar 

  5. S. Ramachandran, P. Kristensen, M.F. Yan, Generation and propagation of radially polarized beams in optical fibers. Opt. Lett. 34, 2525–2527 (2009)

    Article  ADS  Google Scholar 

  6. A.M. Yao, M.J. Padgett, Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics 3, 161–204 (2011)

    Article  ADS  Google Scholar 

  7. H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M.J. Willner, B.I. Erkmen, K.M. Birnbaum, S.J. Dolinar, M.P.J. Lavery, M.J. Padgett, M. Tur, A.E. Willner, Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Opt. Lett. 39, 197–200 (2014)

    Article  ADS  Google Scholar 

  8. G. Xie, Y. Ren, Y. Yan, H. Huang, N. Ahmed, L. Li, Z. Zhao, C. Bao, M. Tur, S. Ashrafi, A.E. Willner, Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre–Gaussian beams with different radial indices. Opt. Lett. 41, 3447–3450 (2016)

    Article  ADS  Google Scholar 

  9. Y. Yan, G. Xie, M.P.J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A.F. Molisch, M. Tur, M.J. Padgett, A.E. Willner, High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat. Commun. 5, 4876 (2014)

    Article  ADS  Google Scholar 

  10. M.J. Padgett, Orbital angular momentum 25 years on [Invited]. Opt. Express 25, 11265–11274 (2017)

    Article  ADS  Google Scholar 

  11. M. Erhard, R. Fickler, M. Krenn, A. Zeilinger, Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17146–17146 (2018)

    Article  Google Scholar 

  12. P. Di Trapani, W. Chinaglia, S. Minardi, A. Piskarskas, G. Valiulis, Observation of quadratic optical vortex solitons. Phys. Rev. Lett. 84, 3843–3846 (2000)

    Article  ADS  Google Scholar 

  13. M. Padgett, R. Bowman, Tweezers with a twist. Nat. Photon. 5, 343–348 (2011)

    Article  ADS  Google Scholar 

  14. M.P.J. Lavery, D.J. Robertson, G.C.G. Berkhout, G.D. Love, M.J. Padgett, J. Courtial, Refractive elements for the measurement of the orbital angular momentum of a single photon. Opt. Express 20, 2110–2115 (2012)

    Article  ADS  Google Scholar 

  15. J. Wang, J.Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 6, 488–496 (2012)

    Article  ADS  Google Scholar 

  16. B.K. Paul, K. Ahmed, M. Thillai Rani, K.P. Sai Pradeep, F.A. Al-Zahrani, Ultra-high negative dispersion compensating modified square shape photonic crystal fiber for optical broadband communication. Alexandria Eng. J. 61, 2799–2806 (2022)

  17. H. Zhang, X. Zhang, H. Li, Y. Deng, L. Xi, X. Tang, W. Zhang, The orbital angular momentum modes supporting fibers based on the photonic crystal fiber structure. Curr. Comput. Aided Drug Des. 7, 286 (2017)

    Google Scholar 

  18. P.S.J. Russell, Photonic-crystal fibers. J. Lightwave Technol. 24, 4729–4749 (2006)

    Article  ADS  Google Scholar 

  19. H. Zhang, W. Zhang, L. Xi, X. Tang, X. Zhang, A new design of a circular photonic crystal fiber supporting 42 oam modes. Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), Optical Society of America, Sydney, 2016, p. ATh2C.4

  20. A. Nandam, W. Shin, Spiral photonic crystal fiber structure for supporting orbital angular momentum modes. Optik 169, 361–367 (2018)

    Article  ADS  Google Scholar 

  21. M. Mehedi Hassan, K. Ahmed, B.K. Paul, M.N. Hossain, F.A. Al Zahrani, Anomalous birefringence and nonlinearity enhancement of As2S3 and As2S5 filled D-shape fiber for optical communication. Phys. Scr. 96, 115501 (2021)

  22. N.A. Mortensen, M.D. Nielsen, J.R. Folkenberg, A. Petersson, H.R. Simonsen, Improved large-mode-area endlessly single-mode photonic crystal fibers. Opt. Lett. 28, 393–395 (2003)

    Article  ADS  Google Scholar 

  23. M.F. Israk, M.A. Razzak, K. Ahmed, M.M. Hassan, M.A. Kabir, M.N. Hossain, B.K. Paul, V. Dhasarathan, Ring-based coil structure photonic crystal fiber for transmission of Orbital Angular Momentum with large bandwidth: outline, investigation and analysis. Opt. Commun. 473, 126003 (2020)

    Article  Google Scholar 

  24. M.A. Kabir, M.M. Hassan, K. Ahmed, M.S.M. Rajan, A.H. Aly, M.N. Hossain, B.K. Paul, Novel spider web photonic crystal fiber for robust mode transmission applications with supporting orbital angular momentum transmission property. Opt. Quantum Electron. 52, 331 (2020)

    Article  Google Scholar 

  25. Y. Yue, L. Zhang, Y. Yan, N. Ahmed, J.-Y. Yang, H. Huang, Y. Ren, S. Dolinar, M. Tur, A.E. Willner, Octave-spanning supercontinuum generation of vortices in an As2S3 ring photonic crystal fiber. Opt. Lett. 37, 1889–1891 (2012)

    Article  ADS  Google Scholar 

  26. H. Zhang, W. Zhang, L. Xi, X. Tang, X. Zhang, X. Zhang, A new type circular photonic crystal fiber for orbital angular momentum mode transmission. IEEE Photonics Technol. Lett. 28, 1426–1429 (2016)

    Article  ADS  Google Scholar 

  27. G. Zhou, G. Zhou, C. Chen, M. Xu, C. Xia, Z. Hou, Design and analysis of a microstructure ring fiber for orbital angular momentum transmission. IEEE Photonics J. 8, 1–12 (2016)

    Google Scholar 

  28. A. Tandjè, J. Yammine, M. Dossou, G. Bouwmans, K. Baudelle, A. Vianou, E.R. Andresen, L. Bigot, Ring-core photonic crystal fiber for propagation of OAM modes. Opt. Lett. 44, 1611–1614 (2019)

    Article  ADS  Google Scholar 

  29. M.A. Kabir, K. Ahmed, M.M. Hassan, M.M. Hossain, B.K. Paul, Design a photonic crystal fiber of guiding terahertz orbital angular momentum beams in optical communication. Opt. Commun. 475, 126192 (2020)

    Article  Google Scholar 

  30. M.M. Hassan, M.A. Kabir, M.N. Hossain, T.K. Nguyen, B.K. Paul, K. Ahmed, V. Dhasarathan, Numerical analysis of circular core shaped photonic crystal fiber for orbital angular momentum with efficient transmission. Appl. Phys. B 126, 145 (2020)

    Article  ADS  Google Scholar 

  31. M.A. Kabir, M.M. Hassan, M.N. Hossain, B.K. Paul, K. Ahmed, Design and performance evaluation of photonic crystal fibers of supporting orbital angular momentum states in optical transmission. Opt. Commun. 467, 125731 (2020)

    Article  Google Scholar 

  32. L. Zhang, K. Zhang, J. Peng, J. Deng, J. Ma, Circular photonic crystal fiber supporting 110 OAM modes. Opt. Commun. 429, 189–193 (2018)

    Article  ADS  Google Scholar 

  33. S. Hong, Y.S. Lee, H. Choi, C. Quan, Y. Li, S. Kim, K. Oh, Hollow silica photonic crystal fiber guiding 101 orbital angular momentum modes without phase distortion in C+L band. J. Lightwave Technol. 38, 1010–1018 (2020)

    Article  ADS  Google Scholar 

  34. S.-H. Huang, Q.-C. Ma, W.-C. Chen, H.-Z. Liu, X.-B. Xing, H. Cui, Z.-C. Luo, W.-C. Xu, A.-P. Luo, Microstructure ring fiber for supporting higher-order orbital angular momentum modes with flattened dispersion in broad waveband. Appl. Phys. B 125, 197 (2019)

    Article  ADS  Google Scholar 

  35. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A.E. Willner, S. Ramachandran, Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013)

    Article  ADS  Google Scholar 

  36. M. Xu, G. Zhou, C. Chen, G. Zhou, Z. Sheng, Z. Hou, C. Xia, A novel micro-structured fiber for OAM mode and LP mode simultaneous transmission. J. Opt. 47, 428–436 (2018)

    Article  Google Scholar 

  37. W. Wang, N. Wang, K. Li, Z. Geng, H. Jia, A novel dual guided modes regions photonic crystal fiber with low crosstalk supporting 56 OAM modes and 4 LP modes. Opt. Fiber Technol. 57, 102213 (2020)

    Article  Google Scholar 

  38. F.A. Al-Zahrani, K. Ahmed, Novel design of dual guided photonic crystal fiber for large capacity transmission in high-speed optics communications with supporting good quality OAM and LP modes. Alex. Eng. J. 59, 4889–4899 (2020)

    Article  Google Scholar 

  39. W. Wang, C. Sun, N. Wang, H. Jia, A design of nested photonic crystal fiber with low nonlinear and flat dispersion supporting 30+50 OAM modes. Opt. Commun. 471, 125823 (2020)

    Article  Google Scholar 

  40. C. Brunet, P. Vaity, Y. Messaddeq, S. Larochelle, L.A. Rusch, Design, fabrication and validation of an OAM fiber supporting 36 states. Opt. Express 22, 26117–26127 (2014)

    Article  ADS  Google Scholar 

  41. S. Ramachandran, P. Kristensen, Optical vortices in fiber. Nanophotonics 2, 455–474 (2013)

    Article  ADS  Google Scholar 

  42. H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, W. Zhang, A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission. Opt. Commun. 397, 59–66 (2017)

    Article  ADS  Google Scholar 

  43. S. Li, J. Wang, Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing. IEEE Photonics J. 5, 7101007–7101007 (2013)

    Article  ADS  Google Scholar 

  44. S. Golowich, Asymptotic theory of strong spin–orbit coupling in optical fiber. Opt. Lett. 39, 92–95 (2014)

    Article  ADS  Google Scholar 

  45. Z. Zhang, J. Gan, X. Heng, Y. Wu, Q. Li, Q. Qian, D. Chen, Z. Yang, Optical fiber design with orbital angular momentum light purity higher than 99.9%. Opt. Express 23, 29331–29341 (2015)

    Article  ADS  Google Scholar 

  46. Y. Yan, Y. Yue, H. Huang, J.-Y. Yang, M.R. Chitgarha, N. Ahmed, M. Tur, S.J. Dolinar, A.E. Willner, Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs. Opt. Lett. 37, 3645–3647 (2012)

    Article  ADS  Google Scholar 

  47. M.M. Hassan, M.A. Kabir, M.N. Hossain, B. Biswas, B.K. Paul, K. Ahmed, Photonic crystal fiber for robust orbital angular momentum transmission: design and investigation. Opt. Quantum Electron. 52, 8 (2019)

    Article  Google Scholar 

  48. Z.A. Hu, Y.Q. Huang, A.P. Luo, H. Cui, Z.C. Luo, W.C. Xu, Photonic crystal fiber for supporting 26 orbital angular momentum modes. Opt. Express 24, 17285–17291 (2016)

    Article  ADS  Google Scholar 

  49. G.P. Agrawal, Nonlinear fiber optics, in Nonlinear Science at the Dawn of the 21st Century. ed. by P.L. Christiansen, M.P. Sørensen, A.C. Scott (Springer, Berlin, 2000), pp. 195–211

    Chapter  Google Scholar 

  50. Refractive Index Database, Refractiveindex.info, https://refractiveindex.info/?shelf=glass&book=BAK1&page=SCHOTT

  51. B.K. Paul, F. Ahmed, M.G. Moctader, K. Ahmed, D. Vigneswaran, Silicon nano crystal filled photonic crystal fiber for high nonlinearity. Opt. Mater. 84, 545–549 (2018)

    Article  ADS  Google Scholar 

  52. M. Zhu, W. Zhang, L. Xi, X. Tang, X. Zhang, A new designed dual-guided ring-core fiber for OAM mode transmission. Opt. Fiber Technol. 25, 58–63 (2015)

    Article  ADS  Google Scholar 

  53. X. Xu, H. Jia, Y. Lei, C. Jia, G. Liu, J. Chai, Y. Peng, J. Xie, Theoretical proposal of a low-loss wide-bandwidth silicon photonic crystal fiber for supporting 30 orbital angular momentum modes. PLoS ONE 12, e0189660 (2017)

    Article  Google Scholar 

  54. X. Feng, A.K. Mairaj, D.W. Hewak, T.M. Monro, Nonsilica glasses for holey fibers. J. Lightwave Technol. 23, 2046 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant no. 61774062 and no. 11674109). The Science and Technology Planning Project of Guangdong Province, China (Grant no. 2017A020219007). Project of Department of Education of Guangdong Province, China (no. 2019KTSCX257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faqiang Wang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Liu, W., Song, Y. et al. A design of dual guided modes ring-based photonic crystal fiber supporting 170 + 62 OAM modes with large effective mode field area. Appl. Phys. B 128, 38 (2022). https://doi.org/10.1007/s00340-022-07761-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07761-7

Navigation