Skip to main content

Advertisement

Log in

Dynamically adjustable photonic crystal waveguide and beam splitter based on the nematic liquid crystal

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We propose a photonic crystal waveguide structure with an adjustable transmission efficiency characteristic. The liquid crystal components are placed in the inclined channel between the two horizontal channels of the Z-shaped waveguide in the photonic crystal structure. The different transmission efficiency of the photonic crystal waveguide can be obtained by applying a voltage to liquid crystal components of different positions. Based on the proposed photonic crystal waveguide structure, we design a 1*4 photonic crystal beam splitter. The finite-element method is used to analyze the transmission efficiency. The results show that: by applying a voltage to liquid crystal components of the light output channel, the selection of the light output port can be realized; by applying a voltage to a single liquid crystal component at different positions in the beam splitting channel, the light splitting ratio of the output port can be adjusted, and the high transmission efficiency of the system can be ensured. The effective control of photonic crystal waveguides is helpful to the design of photonic devices with superior performance and diverse functions, which is of great significance to the development of photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  ADS  Google Scholar 

  2. S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  ADS  Google Scholar 

  3. K.M. Ho, C.T. Chan, C.M. Soukoulis, Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65, 3152–3155 (1990)

    Article  ADS  Google Scholar 

  4. I.L. Garanovich, S. Longhi, A.A. Sukhorukov, Y.S. Kivshar, Light propagation and localization in modulated photonic lattices and waveguides. Phys. Rep. 518, 1–79 (2012)

    Article  ADS  Google Scholar 

  5. F. Mehdizadeh, M. Soroosh, A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photon. Netw. Commun. 31, 65–70 (2016)

    Article  Google Scholar 

  6. Y. Jiang, W. Jiang, L. Gu, X. Chen, R.T. Chen, 80-micron interaction length silicon photonic crystal waveguide modulator. Appl. Phys. Lett. 87, 2059 (2005)

    Article  Google Scholar 

  7. N. Bai, Y. Xie, W. Hong, X. Sun, A terahertz traveling-wave tube based on defect photonic crystal waveguide. IEEE Trans. Plasma Sci. 48, 1936–1941 (2020)

    Article  ADS  Google Scholar 

  8. C.S. Mishra, A. Nayyar, G. Suseendran, G. Palai, L-Shape Si-waveguide for THz-communication. Optik 178, 509–512 (2018)

    Article  ADS  Google Scholar 

  9. P. Mohammad, K. Arash, N. Fakhroddin, Wideband and low-dispersion engineered slow light using liquid infiltration of a modified photonic crystal waveguide. Appl. Opt. 55, 10060–10066 (2016)

    Article  Google Scholar 

  10. Y.T. Fang, H.Q. He, J.X. Hu, Transforming unidirectional edge waveguide into unidirectional air waveguide. IEEE J. Sel. Top. Quantum Electron. 22, 293–301 (2015)

    Article  ADS  Google Scholar 

  11. N.F.F. Areed, A.E. Fakharany, M.F.O. Hameed, S.S.A. Obayya, Controlled optical photonic crystal AND gate using nematic liquid crystal layers. Opt. Quantum Electron. 49, 1–12 (2017)

    Article  Google Scholar 

  12. V. Jandieri, R. Khomeriki, D. Erni, Realization of true all-optical AND logic gate based on nonlinear coupled air-hole type photonic crystal waveguides. Opt. Express 26, 19845–19853 (2018)

    Article  ADS  Google Scholar 

  13. L. Ye, Q. Fei, M. Zi-Ming, Z. Fei, M. Qing-He, L. Zhi-Yuan, All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs. Opt. Express 19, 1945–1953 (2011)

    Article  ADS  Google Scholar 

  14. Z. Yuanliang, Z. Yao, L. Baojun, Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals. Opt. Express 15, 9287–9292 (2007)

    Article  Google Scholar 

  15. M.J. Maleki, M. Soroosh, A. Mir, Ultra-fast all-optical 2-to-4 decoder based on a photonic crystal structure. Appl. Opt. 59, 5422–5428 (2020)

    Article  ADS  Google Scholar 

  16. H. Mondal, M. Sen, K. Goswami, Design and analysis of all-optical 1-to-2 line decoder based on linear photonic crystal. IET Optoelectron. 13, 191–195 (2019)

    Article  Google Scholar 

  17. R. Rajasekar, R. Latha, S. Robinson, Ultra-contrast ratio optical encoder using photonic crystal waveguide. Mater. Lett. 251, 144–147 (2019)

    Article  Google Scholar 

  18. L. Abdollahi Shiramin, W. Xie, B. Snyder, P. De Heyn, P. Verheyen, G. Roelkens, D. Van Thourhout, High extinction ratio hybrid graphene-silicon photonic crystal switch. IEEE Photonics Technol. Lett. 30, 157–160 (2018)

    Article  ADS  Google Scholar 

  19. Q.-H. Liao, X. Zhang, S.-W. Chen, P. Hu, T.-B. Yu, Y.-Z. Huang, Design of an all-optical switch and arbitrary proportion of energy output beam splitter. Phys. Lett. A 377, 2561–2563 (2013)

    Article  ADS  Google Scholar 

  20. R. Rajasekar, G.T. Raja, S. Robinson, Numerical investigation of reconfigurable photonic crystal switch based on phase change nanomaterial. IEEE Trans. Nanotechnol. 19, 545–552 (2020)

    Article  ADS  Google Scholar 

  21. C. Shi, J. Yuan, X. Luo, S. Shi, S. Lu, P. Yuan, W. Xu, Z. Chen, H. Yu, Transmission characteristics of multi-structure bandgap for lithium niobate integrated photonic crystal and waveguide. Opt. Commun. 461, 125222 (2020)

    Article  Google Scholar 

  22. C. Ren, L. Wang, F. Kang, Adjustable unidirectional beam splitters in two dimensional photonic crystals. Opt. Quantum Electron. 52, 1–17 (2020)

    Article  Google Scholar 

  23. X.-R. Zhang, J.-P. Liu, H. Liu, Q. Pan, F.-Q. Yang, S.-Q. Zhang, Y.-M. Guo, X.-J. Liu, X.-Y. Wu, The adjustable band gap structure and transmission characteristics for the two-dimensional function photonic crystal waveguide. Phys. B 567, 5–10 (2019)

    Article  ADS  Google Scholar 

  24. J. Derbali, F. Abdelmalek, Asymmetric light transport in L-shaped and U-shaped photonic crystal waveguides. Chin. J. Phys. 56(5), 2357–2364 (2018)

    Article  MathSciNet  Google Scholar 

  25. J. Zhang, J. Yuan, W. Ai, Numerical optimization design for waveguide bends with low-loss and wide-bandwidth in two-dimensional photonic crystal slabs. J. Opt. 21, 115103 (2019)

    Article  ADS  Google Scholar 

  26. J. Zhang, M. Zhang, Y. Ding, Y. Wang, Phase-change photonic crystal ring resonator for reconfigurable directional-coupler switching. Photon. Nanostruct. Fundam. Appl. 41, 100798 (2020)

    Article  Google Scholar 

  27. L. Kaizhu, F. Haoran, F. Shuai, G. Honglian, L. Chuanbo, Three-output-channel photonic crystal splitter and switch based on nonlinear resonators and the self-collimation characteristics of a light beam. Appl. Opt. 58, 9548–9555 (2019)

    Article  Google Scholar 

  28. S. Khosroabadi, A. Shokouhmand, S. Marjani, Full optical 2-bit analog to digital convertor based on nonlinear material and ring resonators in photonic crystal structure. Optik 200, 163393 (2020)

    Article  ADS  Google Scholar 

  29. B. Rezaei, I.H. Giden, H. Kurt, Tuning light focusing with liquid crystal infiltrated graded index photonic crystals. Opt. Commun. 382, 28–35 (2017)

    Article  ADS  Google Scholar 

  30. I.H. Giden, N. Eti, B. Rezaei, H. Kurt, Adaptive graded index photonic crystal lens design via nematic liquid crystals. IEEE J. Quantum Electron 52, 1–7 (2016)

    Article  Google Scholar 

  31. M.S.S. Ibrahim, M.M. El-Okr, M.K. Gad Hamed, S.S.A. Obayya, M.F.O. Hameed, Ultracompact tunable bifunctional XOR and XNOR photonic crystal logic gates. Opt. Eng. 59, 1 (2020)

    Article  Google Scholar 

  32. C. Babayigit, H. Kurt, M. Turduev, Active beam steering and afocal zooming by nematic liquid crystal-infiltrated graded index photonic structures. J. Phys. D Appl. Phys 52, 335102 (2019)

    Article  Google Scholar 

  33. A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, R. Asquini, Nematic liquid crystal optical channel waveguides on silicon. IEEE J. Quantum Electron 42, 1084–1090 (2006)

    Article  ADS  Google Scholar 

  34. K.R. Khan, K. Mnaymneh, H. Awad, I. Hasan, Slow light propagation in tunable nanoscale photonic crystal cavity filled with nematic liquid crystal. Opt. Eng. 53, 102705–102705 (2014)

    Article  ADS  Google Scholar 

  35. S. Brugioni, R. Meucci, Refractive indices of the nematic mixture E7 at 1550nm. Infrared Phys. Technol. 49, 210–212 (2007)

    Article  ADS  Google Scholar 

  36. T. Higashihara, M. Ueda, Recent progress in high refractive index polymers. Macromolecules 48, 1915–1929 (2015)

    Article  ADS  Google Scholar 

  37. A.B. Chebotareva, G.G. Untila, T.N. Kost, A.S. Stepanov, S.N. Salazkin, V.V. Shaposhnikova, Transparent conductive polymers for laminated multi-wire metallization of bifacial concentrator crystalline silicon solar cells with TCO layers. Sol. Energy Mater. Sol. Cells 165, 1–8 (2017)

    Article  Google Scholar 

  38. S.H. Ryu, D.K. Yoon, Liquid crystal phases in confined geometries. Liq. Cryst 43, 1951–1972 (2016)

    Article  Google Scholar 

  39. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J.V. Campenhout, P. Bienstman, D.V. Thourhout, Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J Lightwave Technol 23, 401–412 (2005)

    Article  ADS  Google Scholar 

  40. S. Jin, Y. Lee, S.-M. Jeon, B.-H. Sohn, W.-S. Chae, J.-K. Lee, Simple fabrication of single- and multi-layer polymer nanotubes by spin-casting method within anodized aluminum oxide (AAO) templates. J. Mater. Chem. 22, 25368–23373 (2012)

    Article  Google Scholar 

  41. S.W. Leonard, J.P. Mondia, H. Driel, O. Toader, V. Lehmann, Tunable two-dimensional photonic crystals using liquid crystal infiltration. Phys. Rev. B 61, 4 (2000)

    Article  Google Scholar 

  42. C.-H. Ho, Y.-C. Cheng, L. Maigyte, H. Zeng, J. Trull, C. Cojocaru, D.S. Wiersma, K. Staliunas, Controllable light diffraction in woodpile photonic crystals filled with liquid crystal. Appl. Phys. Lett. 106, 2059–3994 (2015)

    Article  Google Scholar 

  43. A. Fedaouche, H. Abri Badaoui, M. Abri, An ultra-compact 1 × 5 and 1 × 10 beam-splitters in photonic crystal slab. Optik 157, 1300–1305 (2018)

    Article  ADS  Google Scholar 

  44. F. Amal, A.B. Hadjira, A. Mehadji, Ultra-highly efficient and splitters for terahertz communication applications. IEEE Photonics Technol. Lett. 28, 1434–1437 (2016)

    Article  ADS  Google Scholar 

  45. P. Li, Y. Chen, Y. Zhang, Y. Zuo, Polarization independent 1 × 3 equal optical power splitter based on self-collimation effect in two-dimensional photonic crystal. Opt. Eng. 58, 1 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofang Xu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Zhang, H., Huang, J. et al. Dynamically adjustable photonic crystal waveguide and beam splitter based on the nematic liquid crystal. Appl. Phys. B 128, 32 (2022). https://doi.org/10.1007/s00340-022-07760-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07760-8

Navigation