Skip to main content
Log in

Mid-infrared CO2 sensor with blended absorption features for non-uniform laminar premixed flames

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We develop a novel mid-infrared CO2 absorption sensor exploiting spectrally blended features to characterize thermochemical non-uniformity of laminar premixed flames. A new algorithm for interpreting spectra with significantly blended features is proposed for single line-of-sight multi-transition absorption thermometry. A CO2 sensor covering eight absorption transitions near 2378.0 cm−1 is demonstrated in a laminar premixed CH4/Air flame at an equivalence ratio of \(\varphi =1.0\). The average signal-to-noise ratio is 1293 with a measurement time of 1.0 s, and the estimated CO2 detection limit is 42.8 ppm at 1543 K with 6 cm pathlength. Computational fluid dynamics (CFD) simulation with reduced GRI 1.2 mechanism is performed for comparison. Spatially resolved distributions are obtained with the laser absorption spectroscopy (LAS) measurements, combined with postulated distribution from CFD simulation. The LAS measurements agree with the CFD simulation, with a central-zone temperature difference of less than 1.1% and CO2 concentration difference of less than 1.0%. Discrepancy is observed in the boundary layer region due to pronounced mixing with the ambient surroundings. The sensor developed provides a lead for general LAS sensor design (blended absorption features, ambient interference, or under optically thick conditions), and can serve for practical combustion sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.K. Hanson, Proc. Combust. Inst. 33(1), 1–40 (2011)

    Google Scholar 

  2. X. Chao, Ph.D. Thesis, Stanford University (2012)

  3. M.A. Bolshov, Y.A. Kuritsyn, Y.V. Romanovskii, Spectrochim. Acta B: Atom. Spectrosc. 106, 45–66 (2015)

    ADS  Google Scholar 

  4. C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Prog. Energy Combust. Sci. 60, 132–176 (2017)

    Google Scholar 

  5. Z. Du, S. Zhang, J. Li, N. Gao, K. Tong, Appl. Sci. 9(2), 338 (2019)

    Google Scholar 

  6. C. Liu, L. Xu, Appl. Spectrosc. Rev. 54(1), 1–44 (2019)

    ADS  Google Scholar 

  7. Z. Wang, P. Fu, X. Chao, Appl. Sci. 9(13), 2723 (2019)

    Google Scholar 

  8. Z. Wang, P. Fu, X. Chao, Meas. Sci. Technol. 31(3), 35202 (2019)

    Google Scholar 

  9. K. Sun, X. Chao, R. Sur, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 24(12), 125203 (2013)

    ADS  Google Scholar 

  10. A. Upadhyay, A.L. Chakraborty, Opt. Lett. 40(17), 4086–4089 (2015)

    ADS  Google Scholar 

  11. X. Liu, J.B. Jeffries, R.K. Hanson, AIAA J. 45(2), 411–419 (2007)

    ADS  Google Scholar 

  12. L. Ma, L.Y. Lau, W. Ren, Appl. Phys. B 123(3), 83 (2017)

    ADS  Google Scholar 

  13. L. Ma, K.-P. Cheong, H. Ning, W. Ren, Exp. Therm. Fluid Sci. 112, 110013 (2020)

    Google Scholar 

  14. K.-P. Cheong, L. Ma, Z. Wang, W. Ren, Appl. Spectrosc. 73(5), 529–539 (2019)

    ADS  Google Scholar 

  15. D. Wen, Y. Wang, Opt. Express 28(25), 37879–37902 (2020)

    ADS  Google Scholar 

  16. W. Cai, C.F. Kaminski, Prog. Energy Combust. Sci. 59, 1–31 (2017)

    Google Scholar 

  17. L. Ma, W. Cai, A.W. Caswell, T. Kraetschmer, S.T. Sanders, S. Roy, J.R. Gord, Opt. Express 17(10), 8602–8613 (2009)

    ADS  Google Scholar 

  18. N.A. Malarich, G.B. Rieker, J. Quant. Spectrosc. Radiat. Transf. 260, 107455 (2021)

    Google Scholar 

  19. N.A. Malarich, G.B. Rieker, J. Quant. Spectrosc. Radiat. Transf. 272, 107805 (2021)

    Google Scholar 

  20. C. Liu, L. Xu, Z. Cao, H. McCann, IEEE Trans. Instrum. Meas. 63, 3067–3075 (2014)

    Google Scholar 

  21. C. Liu, Z. Cao, F. Li, Y. Lin, L. Xu, Meas. Sci. Technol. 28, 054002 (2017)

    ADS  Google Scholar 

  22. A. Guha, I. Schoegl, J. Popul. Power. 53, 350–359 (2014)

    Google Scholar 

  23. A. Guha, I. Schoegl, Appl. Opt. 53, 8095–8103 (2014)

    ADS  Google Scholar 

  24. R.M. Mihalcea, D.S. Baer, R.K. Hanson, Meas. Sci. Technol. 9(3), 327 (1998)

    ADS  Google Scholar 

  25. R.M. Mihalcea, D.S. Baer, R.K. Hanson, Appl. Opt. 37(36), 8341–8347 (1998)

    ADS  Google Scholar 

  26. A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 90(3–4), 619–628 (2008)

    ADS  Google Scholar 

  27. R.M. Spearrin, W. Ren, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 116(4), 855–865 (2014)

    ADS  Google Scholar 

  28. K. Wu, F. Li, X. Cheng, Y. Yong, X. Lin, Y. Xia, Appl. Phys. B 117(2), 659–666 (2014)

    Google Scholar 

  29. J.J. Girard, R.M. Spearrin, C.S. Goldenstein, R.K. Hanson, Combust. Flame 178, 158–167 (2017)

    Google Scholar 

  30. X. Liu, G. Zhang, Y. Huang, Y. Wang, F. Qi, Appl. Phys. B 124(4), 61 (2018)

    ADS  Google Scholar 

  31. G. Zhang, G. Wang, Y. Huang, Y. Wang, X. Liu, Optik 170, 166–177 (2018)

    ADS  Google Scholar 

  32. T.W. Hänsch, Rev. Mod. Phys. 78(4), 1297 (2006)

    ADS  Google Scholar 

  33. N. Picqué, T.W. Hänsch, Nat. Photonics 13(3), 146–157 (2019)

    ADS  Google Scholar 

  34. Z. Wang, Z. Chen, X. Chao, E. Vicentini, T.W. Hänsch, N. Picqué, Front. Opt. Opt. Soc. Am. FW7B (2020). https://doi.org/10.1364/FIO.2020.FW7B.3

    Article  Google Scholar 

  35. F. Adler, P. Masłowski, A.A. Foltynowicz, K.C. Cossel, T.C. Briles, I. Hartl, J. Ye, Opt. Express 18(21), 21861–21872 (2010)

    ADS  Google Scholar 

  36. A.D. Draper, R.K. Cole, A.S. Makowiecki, J. Mohr, A. Zdanowicz, A. Marchese, N. Hoghooghi, G.B. Rieker, Opt. Express 27, 10814–10825 (2019)

    ADS  Google Scholar 

  37. L.A. Kranendonk, X. An, A.W. Caswell, R.E. Herold, S.T. Sanders, R. Huber, J.G. Fujimoto, Y. Okura, Y. Urata, Opt. Express 15(23), 15115–15128 (2007)

    ADS  Google Scholar 

  38. S.T. Sanders, Appl. Phys. B 75(6), 799–802 (2002)

    ADS  Google Scholar 

  39. M.C. Phillips, B.E. Bernacki, S.S. Harilal, J.M. Schwallier, N.G. Glumac, J. Appl. Phys 126(9), 093102 (2009)

    ADS  Google Scholar 

  40. M.C. Phillips, T.L. Myers, T.J. Johnson, D.R. Weise, Opt. Express 28(6), 8680–8700 (2020)

    ADS  Google Scholar 

  41. M. Frenklach, H. Wang, C.-L. Yu, M. Goldenberg, C.T. Bowman, R.K. Hanson, D.F. Davidson, E.J. Chang, G.P. Smith, D.M. Golden, W.C. Gardiner, V. Lissianski, http://www.me.berkeley.edu/gri_mech/. (2021)

  42. X. An, A.W. Caswell, J.J. Lipor, S.T. Sander, J. Quant. Spectrosc. Radiat. Transf. 112(14), 2355–2362 (2011)

    ADS  Google Scholar 

  43. X. An, A.W. Caswell, S.T. Sanders, J. Quant. Spectrosc. Radiat. Transf. 112(5), 779–785 (2011)

    ADS  Google Scholar 

  44. S.T. Sanders, J. Wang, J.B. Jeffries, R.K. Hanson, Appl. Opt. 40(24), 4404–4415 (2001)

    ADS  Google Scholar 

  45. C. Liu, L. Xu, Z. Cao, Appl. Opt. 52(20), 4827–4842 (2013)

    ADS  Google Scholar 

  46. V.V. Liger, V.R. Mironenko, Y.A. Kuritsyn, M.A. Bolshov, Sensors 18(5), 1608 (2018)

    ADS  Google Scholar 

  47. N.A. Malarich, G.B. Rieker, Laser Appl Chem Secur Environ Anal Opt Soc Am LW2C-6 (2018). https://doi.org/10.1364/LACSEA.2018.LW2C.6

    Article  Google Scholar 

  48. S. Prucker, W. Meier, W. Stricker, Rev. Sci. Instrum. 65(9), 2908–2911 (1994)

    ADS  Google Scholar 

  49. Z. Qu, O. Werhahn, V. Ebert, Appl. Spectrosc. 72(6), 853–862 (2018)

    ADS  Google Scholar 

  50. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010)

    ADS  Google Scholar 

  51. C.S. Goldenstein, V.A. Miller, R.M. Spearrin, C.L. Strand, J. Quant. Spectrosc. Radiat. Transf. 200, 249–257 (2017)

    ADS  Google Scholar 

  52. B.C. Reed, Am. J. Phys. 57(7), 642–646 (1989)

    ADS  Google Scholar 

  53. K. Shojaee, 17th Mediterranean conference on control and automation. IEEE, pp. 1050–1055 (2009)

  54. W. Ben-Ameur, Comput. Optim. Appl. 29(3), 369–385 (2004)

    MathSciNet  Google Scholar 

  55. Z. Qu, E. Steinvall, R. Ghorbani, F.M. Schmidt, Anal. Chem. 88(7), 3754–3760 (2016)

    Google Scholar 

  56. E. Thorin, F.M. Schmidt, Opt. Lett. 45(18), 5230–5233 (2020)

    ADS  Google Scholar 

Download references

Acknowledgements

National Natural Science Foundation of China (51976105, 91841302, 61627804); National Basic Research Program of China (JCKY2019204B020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Chao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wang, W., Ma, L. et al. Mid-infrared CO2 sensor with blended absorption features for non-uniform laminar premixed flames. Appl. Phys. B 128, 31 (2022). https://doi.org/10.1007/s00340-022-07758-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07758-2

Navigation