Skip to main content

Wavelength-scanned all-fiber cavity ring-down gas sensing using an L-band active fiber loop

Abstract

We report an all-fiber wavelength-scanned cavity ring-down technique using an L-band active fiber loop. A software-based wavelength scanning scheme is developed to automatically sweep the absorption line of the analyte, by which the empty cavity loss can be directly obtained as well as the absorption information. Hence, analyte information can be further quantified by analyzing the whole calibration-free absorption spectrum. We choose the absorption transition of R(14) of CO2, as an example, for demonstration. The recovered absorption spectrum matches the theoretically computed absorption profile well with an R2 value of 0.9964. Under an optimized integration time of 308 s, the sensing system shows a noise equivalent absorption coefficient of 2.15 × 10–6 cm–1, suggesting its potential applications to gas sensing with easy optical assembly, simple operation, and long-term stability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. A. O’Keefe, D.A. Deacon, Rev. Sci. Instrum. 59(12), 2544–2551 (1988)

    ADS  Article  Google Scholar 

  2. P. Zalicki, R.N. Zare, J. Chem. Phys. 102(7), 2708–2717 (1995)

    ADS  Article  Google Scholar 

  3. G. Berden, R. Peeters, G. Meijer, Int. Rev. Phys. Chem. 19(4), 565–607 (2000)

    Article  Google Scholar 

  4. Y. Chen, K.K. Lehmann, J. Kessler, B.S. Lollar, G.L. Couloume, T.C. Onstott, Anal. Chem. 85(23), 11250–11257 (2013)

    Article  Google Scholar 

  5. W. Yuan, D. Zheng, J. Jiang, Y. Chao, IEEE Trans. Instrum. Meas. (2021).

  6. L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013)

    ADS  Article  Google Scholar 

  7. G. Stewart, K. Atherton, H. Yu, B. Culshaw, Meas. Sci. Technol. 12(7), 843 (2001)

    ADS  Article  Google Scholar 

  8. D.E. Vogler, M.G. Müller, M.W. Sigrist, Appl. Opt. 42(27), 5413–5417 (2003)

    ADS  Article  Google Scholar 

  9. G. Stewart, K. Atherton, B. Culshaw, Opt. Lett. 29(5), 442–444 (2004)

    ADS  Article  Google Scholar 

  10. N. Ni, C. Chan, T. Chuah, L. Xia, P. Shum, Meas Sci Technol 19(11), 115203 (2008)

    ADS  Article  Google Scholar 

  11. Y. Zhao, L. Bai, Q. Wang, Opt Commun 309, 328–332 (2013)

    ADS  Article  Google Scholar 

  12. C. Zhu, G. Wang, Z. Zheng, R. Wang, X. Tao, P. Wang, IEEE Photonics J. 8(5), 1–8 (2016)

    Google Scholar 

  13. Y. Wang, G.-M. Ma, D. Zheng, W.-Q. Qin, J. Jiang, H.-Y. Zhou, C. Yan, Sens Actuators B Chem 346, 130590 (2021)

    Article  Google Scholar 

  14. Y. Zhao, L. Bai, B. Han, Q. Wang, Instrum Sci. Technol. 41(4), 349–364 (2013)

    Article  Google Scholar 

  15. S.O. Silva, R. Magalhães, M. Marques, O. Frazão, Opt. Laser Technol. 78, 115–119 (2016)

    ADS  Article  Google Scholar 

  16. Y. Zhao, J. Chang, J. Ni, Q. Wang, T. Liu, C. Wang, P. Wang, G. Lv, G. Peng, Opt. Express 22(9), 11244–11253 (2014)

    ADS  Article  Google Scholar 

  17. R. S. Vodhanel, M. Krain, R. E. Wagner, W. B. Sessa, Opt. Soc. Am. WG5 (1994).

  18. Q. Wang, Z. Wang, W. Ren, Meas Sci Technol 28(6), 065102 (2017)

    ADS  Article  Google Scholar 

  19. T. Von Lerber, M.W. Sigrist, Appl. Opt. 41(18), 3567–3575 (2002)

    ADS  Article  Google Scholar 

  20. M. Lackner, Rev. Chem. Eng. 23(2), 65–147 (2007)

    Article  Google Scholar 

  21. J. Nedoma, M. Fajkus, L. Bednarek, J. Frnda, J. Zavadil, V. Vasinek, Adv. Electr. Electr. Eng. 14(4), 460–466 (2016)

    Google Scholar 

  22. K. Sun, X. Chao, R. Sur, C. Goldenstein, J. Jeffries, R. Hanson, Meas, Sci. Technol. 24(12), 125203 (2013)

    ADS  Article  Google Scholar 

  23. Q. Wang, J. Chang, W. Wei, C. Zhu, C. Tian, Appl. Phys. B 117(4), 1015–1023 (2014)

    ADS  Article  Google Scholar 

  24. Q. Wang, Z. Wang, W. Ren, P. Patimisco, A. Sampaolo, V. Spagnolo, Sens. Actuators B Chem. 268, 512–518 (2018)

    Article  Google Scholar 

  25. H. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson, Appl. Opt. 45(5), 1052–1061 (2006)

    ADS  Article  Google Scholar 

  26. K. Liu, W. Jing, G. Peng, J. Zhang, D. Jia, H. Zhang, Y. Zhang, Opt. Commun. 281(12), 3286–3290 (2008)

    ADS  Article  Google Scholar 

  27. L. Yu, T. Liu, K. Liu, J. Jiang, L. Zhang, Y. Jia, T. Wang, Sens. Actuators B Chem. 193, 356–362 (2014)

    Article  Google Scholar 

  28. X. Zhou, J. Jeffries, R. Hanson, Appl. Phys. B 81(5), 711–722 (2005)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Strategic Priority Research Program of Chinese Academy of Sciences (XDA17040513, XDA22020502), National Natural Science Foundation of China (62005267), Scientific Instrument Developing Project of the Chinese Academy of Sciences (YJKYYQ20190037), the Second Comprehensive Scientific Investigation of the Qinghai-Tibet Plateau (2019QZKK020802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Gain curve characterization of the EDFA

Appendix A: Gain curve characterization of the EDFA

The gain curve of the EDFA is calibrated. The seed laser is divided into two beams by a 50:50 coupler after a manually adjustable attenuator. With one branch connected to the EDFA, its input power is attenuated from 0.1 mW to 0.5 μW. The output power of EDFA is measured after being filtered by the FBG. The calibration result is shown in Fig. 10.

Fig. 10
figure 10

Gain curve of the EDFA as a function of input power

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Hu, M., Wang, W. et al. Wavelength-scanned all-fiber cavity ring-down gas sensing using an L-band active fiber loop. Appl. Phys. B 128, 30 (2022). https://doi.org/10.1007/s00340-022-07757-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07757-3