Skip to main content
Log in

Understanding all-optical switching at the epsilon-near-zero point: a tutorial review

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Epsilon-near-zero (ENZ) materials that operate in the spectral region where the real part of the permittivity crosses zero have recently emerged as a promising platform for all-optical switching because of the large, optically induced reflectance and transmittance modulation they offer at ultrafast speeds. To gain insights into the ENZ modulation, this study focuses on the reflectance and transmittance modulation of commonly used ENZ switching schemes and applies an analytical framework both for intraband and interband pumping. We consider the effects of the wavelength, the angle, and the probe polarization on the modulation amplitude for different configurations, specifically highlighting the locations of the maximum reflectance/transmittance modulation and the maximum refractive index modulation, which often occur at different wavelengths around the ENZ point. We find that the maximum modulation, while proximal to the ENZ point, can occur away from the ENZ point and even slight deviations can result in seemingly anomalous modulation behavior. The occurrence of resonances at the ENZ region for ultrathin films further increases the modulation strength. This work paves the path for practical and effective all-optical modulation approaches employing ENZ materials, and will help design the best experimental configurations for future material studies and nonlinear optical experiments employing ENZ materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Reutzel, A. Li, B. Gumhalter, H. Petek, Phys. Rev. Lett. 123, 017404 (2019)

    Article  ADS  Google Scholar 

  2. P.B. Johnson, R.W. Christy, Phys. Rev. B 9, 5056 (1974)

    Article  ADS  Google Scholar 

  3. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  4. G.V. Naik, V.M. Shalaev, A. Boltasseva, Adv. Mater. 25, 3264 (2013)

    Article  Google Scholar 

  5. N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V.M. Shalaev, A.A. Boltasseva, Optica 2, 616 (2015)

    Article  ADS  Google Scholar 

  6. T. Tyborski, S. Kalusniak, S. Sadofev, F. Henneberger, M. Woerner, T. Elsaesser, Phys. Rev. Lett. 115, 147401 (2015)

    Article  ADS  Google Scholar 

  7. M.Z. Alam, I. de Leon, R.W. Boyd, Science 352, 795 (2016)

    Article  ADS  Google Scholar 

  8. A. Ciattoni, C. Rizza, E. Palange, Phys. Rev. A 81, 043839 (2010)

    Article  ADS  Google Scholar 

  9. C. Argyropoulos, P.Y. Chen, G. D’Aguanno, N. Engheta, A. Alù, Phys. Rev. B Condens. Matter and Mater. Phys. 85, 45129 (2012)

    Article  ADS  Google Scholar 

  10. B. Edwards, A. Alù, M.E. Young, M. Silveirinha, N. Engheta, Phys. Rev. Lett. 100, 1 (2008)

    Article  Google Scholar 

  11. G. Subramania, A.J. Fischer, T.S. Luk, Appl. Phys. Lett. 101, 241107 (2012)

    Article  ADS  Google Scholar 

  12. R. Maas, J. Parsons, N. Engheta, A. Polman, Nat. Photon. 7, 907 (2013)

    Article  ADS  Google Scholar 

  13. A.A. Basharin, C. Mavidis, M. Kafesaki, E.N. Economou, C.M. Soukoulis, Phys. Rev. B Condens. Matter Mater. Phys. 87, 155130 (2013)

    Article  ADS  Google Scholar 

  14. S. Suresh, O. Reshef, M.Z. Alam, J. Upham, M. Karimi, R.W. Boyd, ACS Photon. 8, 125 (2021)

    Article  Google Scholar 

  15. Y. Li, C.T. Chan, E. Mazur, Light Sci. Appl. 10, 203 (2021)

    Article  ADS  Google Scholar 

  16. D.I. Vulis, P. Camayd-Muñoz, Y. Li, O. Reshef, M. Lončar, E. Mazur, Integrated zero-index supercouplers. Frontiers in Optics 2017, (Optical Society of America, 2017) pp JW3A.108. http://opg.optica.org/abstract.cfm?URI=LS-2017-JW3A.108

  17. M. Silveirinha, N. Engheta, Phys. Rev. Lett. 97, 157403 (2006)

    Article  ADS  Google Scholar 

  18. M.G. Silveirinha, N. Engheta, Phys. Rev. B Condens. Matter Mater. Phys. 76, 245109 (2007)

    Article  ADS  Google Scholar 

  19. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, P. Vincent, Phys. Rev. Lett. 89, 603 (2002)

    Article  Google Scholar 

  20. G. Lovat, P. Burghignoli, F. Capolino, D.R. Jackson, and D.R. Wilton, Directive radiation from a line source in a metamaterial slab with low permittivity. 2005 IEEE Antennas and Propagation Society International Symposium, vol 1B (Digest), pp 260–263 (2005). https://doi.org/10.1109/APS.2005.1551537

  21. A. Alù, M.G. Silveirinha, A. Salandrino, N. Engheta, Phys. Rev. B Condens. Matter Mater. Phys. 75, 155410 (2007)

    Article  ADS  Google Scholar 

  22. A. Monti, F. Bilotti, A. Toscano, L. Vegni, Opt. Commun. 285, 3412 (2012)

    Article  ADS  Google Scholar 

  23. T.S. Luk, S. Campione, I. Kim, S. Feng, Y.C. Jun, S. Liu, J.B. Wright, I. Brener, P.B. Catrysse, S. Fan, M.B. Sinclair, Phys. Rev. B Condens. Matter Mater. Phys. 90, 085411 (2014)

    Article  ADS  Google Scholar 

  24. J. Park, J.H. Kang, A.P. Vasudev, D.T. Schoen, H. Kim, E. Hasman, M.L. Brongersma, ACS Photon. 1, 812 (2014)

    Article  Google Scholar 

  25. J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M.A. Kats, C. Ronning, Phys. Rev. Appl. 8, 014009 (2017)

    Article  ADS  Google Scholar 

  26. A. Marini, F.J. Garcia De Abajo, Sci. Rep. 6, 20088 (2016)

    Article  ADS  Google Scholar 

  27. L. Caspani, R.P.M.M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. di Falco, V.M. Shalaev, A. Boltasseva, D. Faccio, Phys. Rev. Lett. 116, 233901 (2016)

    Article  ADS  Google Scholar 

  28. M.Z. Alam, S.A. Schulz, J. Upham, I. de Leon, R.W. Boyd, Nat. Photon. 12, 79 (2018)

    Article  ADS  Google Scholar 

  29. K. Wu, Z. Wang, J. Yang, H. Ye, Opt. Lett. 44, 2490 (2019)

    Article  ADS  Google Scholar 

  30. I. Liberal, N. Engheta, Nat. Photon. 11, 149 (2017)

    Article  ADS  Google Scholar 

  31. X. Niu, X. Hu, S. Chu, Q. Gong, Adv. Opt. Mater. 6, 1701292 (2018)

    Article  Google Scholar 

  32. N. Kinsey, C. DeVault, A. Boltasseva, V.M. Shalaev, Nat. Rev. Mater. 4, 742 (2019)

    Article  ADS  Google Scholar 

  33. O. Reshef, I. de Leon, M.Z. Alam, R.W. Boyd, Nat. Rev. Mater. 4, 535 (2019)

    Article  Google Scholar 

  34. J. Wu, Z.T. Xie, Y. Sha, H.Y. Fu, Q. Li, Photon. Res. 9, 1616 (2021)

    Article  Google Scholar 

  35. A. Boltasseva, H.A. Atwater, Science 331, 290 (2011)

    Article  ADS  Google Scholar 

  36. G.V. Naik, J. Kim, A. Boltasseva, Opt. Mater. Express 1, 1090 (2011)

    Article  ADS  Google Scholar 

  37. M. Clerici, N. Kinsey, C. DeVault, J. Kim, E.G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, M. Ferrera, Nat. Commun. 8, 15829 (2017)

    Article  ADS  Google Scholar 

  38. Y. Yang, K. Kelley, E. Sachet, S. Campione, T.S. Luk, J.P. Maria, M.B. Sinclair, I. Brener, Nat. Photon. 11, 390 (2017)

    Article  ADS  Google Scholar 

  39. S. Gurung, A. Anopchenko, S. Bej, J. Joyner, J.D. Myers, J. Frantz, H.W.H. Lee, Atomic Layer Engineering of Epsilon-Near-Zero Ultrathin Films with Controllable Field Enhancement. Adv. Mater. Interfaces 7(17), 2000844 (Wiley Online Library, 2020)

  40. S. Saha, B.T. Diroll, J. Shank, Z. Kudyshev, A. Dutta, S.N. Chowdhury, T.S. Luk, S. Campione, R.D. Schaller, V.M. Shalaev, A. Boltasseva, M.G. Wood, Adv. Funct. Mater. 30, 1908377 (2020)

    Article  Google Scholar 

  41. H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, J. Klamkin, IEEE J. Sel. Top. Quantum Electron. 21, 192 (2015)

    Article  ADS  Google Scholar 

  42. J.W. Cleary, E.M. Smith, K.D. Leedy, G. Grzybowski, J. Guo, Opt. Mater. Express 8, 1231 (2018)

    Article  ADS  Google Scholar 

  43. Y. Wang, A.C. Overvig, S. Shrestha, R. Zhang, R. Wang, N. Yu, L. Dal Negro, Opt. Mater. Express 7, 2727 (2017)

    Article  ADS  Google Scholar 

  44. M. Abb, P. Albella, J. Aizpurua, O.L. Muskens, Nano Lett. 11, 2457 (2011)

    Article  ADS  Google Scholar 

  45. A. Capretti, L.D. Negro, N. Engheta, Y. Wang, Opt. Lett. 40(7), 1500–1503 (2015)

    Article  ADS  Google Scholar 

  46. J. Wu, Z. T. Xie, H. Y. Fu, and Q. Li, in 2020 12th International Conference on Advanced Infocomm Technology, ICAIT 2020, p. 5 (2020)

  47. W. Tian, F. Liang, D. Lu, H. Yu, H. Zhang, Photon. Res. 9, 317 (2021)

    Article  Google Scholar 

  48. J. Kim, A. Dutta, G.V. Naik, A.J. Giles, F.J. Bezares, C.T. Ellis, J.G. Tischler, A.M. Mahmoud, H. Caglayan, O.J. Glembocki, A.V. Kildishev, J.D. Caldwell, A. Boltasseva, N. Engheta, Optica 3, 339 (2016)

    Article  ADS  Google Scholar 

  49. C. DeVault, V.A. Zenin, A. Pors, J. Kim, K. Chaudhuri, S. Bozhevolnyi, V.M. Shalaev, and A. Boltasseva, Plasmonic antenna resonance pinning and suppression of near-field coupling from epsilon-near-zero substrate. 2017 Conference on Lasers and Electro-Optics, CLEO 2017-Proceedings, pp. 1–1 (2017)

  50. C.T. DeVault, V.A. Zenin, A. Pors, K. Chaudhuri, J. Kim, A. Boltasseva, V.M. Shalaev, S.I. Bozhevolnyi, Optica 5, 1557 (2018)

    Article  ADS  Google Scholar 

  51. S.A. Schulz, A.A. Tahir, M.Z. Alam, J. Upham, I. de Leon, R.W. Boyd, Phys. Rev. A 93, 063846 (2016)

    Article  ADS  Google Scholar 

  52. S. Vezzoli, V. Bruno, C. Devault, T. Roger, V.M. Shalaev, A. Boltasseva, M. Ferrera, M. Clerici, A. Dubietis, D. Faccio, Phys. Rev. Lett. 120, 43902 (2018)

    Article  ADS  Google Scholar 

  53. J.B. Khurgin, M. Clerici, V. Bruno, L. Caspani, C. DeVault, J. Kim, A. Shaltout, A. Boltasseva, V.M. Shalaev, M. Ferrera, D. Faccio, N. Kinsey, Optica 7, 226 (2020)

    Article  ADS  Google Scholar 

  54. K. Pang, M.Z. Alam, Y. Zhou, C. Liu, O. Reshef, K. Manukyan, M. Voegtle, A. Pennathur, C. Tseng, X. Su, H. Song, Z. Zhao, R. Zhang, H. Song, N. Hu, A. Almaiman, J.M. Dawlaty, R.W. Boyd, M. Tur, A.E. Willner, Nano Lett. 21, 5907 (2021)

    Article  ADS  Google Scholar 

  55. Y. Zhou, M.Z. Alam, M. Karimi, J. Upham, O. Reshef, C. Liu, A.E. Willner, R.W. Boyd, Nat. Commun. 11, 2180 (2020)

    Article  ADS  Google Scholar 

  56. V. Bruno, C. DeVault, S. Vezzoli, Z. Kudyshev, T. Huq, S. Mignuzzi, A. Jacassi, S. Saha, Y.D. Shah, S.A. Maier, D.R.S. Cumming, A. Boltasseva, M. Ferrera, M. Clerici, D. Faccio, R. Sapienza, V.M. Shalaev, Phys. Rev. Lett. 124, 043902 (2020)

    Article  ADS  Google Scholar 

  57. E. Lustig, Y. Sharabi, M. Segev, Optica 5, 1390 (2018)

    Article  ADS  Google Scholar 

  58. J.B. Khurgin, M. Clerici, N. Kinsey, Laser Photon. Rev. 15, 2000291 (2021)

    Article  ADS  Google Scholar 

  59. J.B. Khurgin, Adv. Opt. Photon. 2, 287 (2010)

    Article  Google Scholar 

  60. N. Kinsey, J. Khurgin, Optical Materials Express 9, 2793 (2019)

    Article  ADS  Google Scholar 

  61. B.T. Diroll, S. Saha, V.M. Shalaev, A. Boltasseva, R.D. Schaller, Adv. Opt. Mater. 8, 2000652 (2020)

    Article  Google Scholar 

  62. J. Bohn, T.S. Luk, C. Tollerton, S.W. Hutchings, I. Brener, S. Horsley, W.L. Barnes, E. Hendry, Nat. Commun. 12, 1017 (2021)

    Article  ADS  Google Scholar 

  63. S. Saha, A. Dutta, C. DeVault, B.T. Diroll, R.D. Schaller, Z. Kudyshev, X. Xu, A. Kildishev, V.M. Shalaev, A. Boltasseva, Mater. Today 43, 27 (2021)

    Article  Google Scholar 

  64. V.E. Babicheva, A. Boltasseva, A.V. Lavrinenko, Nanophotonics 4, 165 (2015)

    Article  Google Scholar 

  65. A.D. Dunkelberger, D.C. Ratchford, A.B. Grafton, V.M. Breslin, E.S. Ryland, D.S. Katzer, K.P. Fears, R.J. Weiblen, I. Vurgaftman, A.J. Giles, C.T. Ellis, J.G. Tischler, J.D. Caldwell, J.C. Owrutsky, ACS Photon. 7, 279 (2020)

    Article  Google Scholar 

  66. R. Secondo, J. Khurgin, N. Kinsey, Opt. Mater. Express 10, 1545 (2020)

    Article  ADS  Google Scholar 

  67. A.R. Rashed, B. Can Yildiz, S.R. Ayyagari, H. Caglayan, Phys. Rev. B 101, 1301 (2020)

    Article  Google Scholar 

  68. H. Wang, K. Du, X. Dai, W. Zhang, R. Liu, S.J. Chua, T. Mei, Nanophotonics 9, 4287 (2020)

    Article  Google Scholar 

  69. Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, H. Hosono, Adv. Mater. 29, 1700754 (2017)

    Article  Google Scholar 

  70. H. George, J. Reed, M. Ferdinandus, C. DeVault, A. Lagutchev, A. Urbas, T.B. Norris, V.M. Shalaev, A. Boltasseva, N. Kinsey, Opt. Mater. Express 9, 3911 (2019)

    Article  ADS  Google Scholar 

  71. B.E.A. Saleh, M.C. Teich, Fundamentals of photonics (Wiley, Berlin, 2019)

    Google Scholar 

  72. S. Campione, I. Brener, F. Marquier, Phys. Rev. B Condens. Matter Mater. Phys. 91, 1408 (2015)

    Article  ADS  Google Scholar 

  73. S. Campione, I. Kim, D. de Ceglia, G.A. Keeler, T.S. Luk, Opt. Express 24, 18782 (2016)

    Article  ADS  Google Scholar 

  74. G.H. Meeten, Meas. Sci. Technol. 8, 728 (1997)

    Article  ADS  Google Scholar 

  75. K.L. Kliewer, R. Fuchs, Phys. Rev. 153, 498 (1967)

    Article  ADS  Google Scholar 

  76. D. Traviss, R. Bruck, B. Mills, M. Abb, O.L. Muskens, Appl. Phys. Lett. 102, 1212 (2013)

    Article  Google Scholar 

  77. K. Chaudhuri, U. Guler, S.I. Azzam, H. Reddy, S. Saha, E.E. Marinero, A.V. Kildishev, V.M. Shalaev, A. Boltasseva, ACS Photon. 7, 472 (2020)

    Article  Google Scholar 

  78. P. Berini, Adv. Opt. Photon. 1, 484 (2009)

    Article  Google Scholar 

  79. R.A. Ferrell, Phys. Rev. 111, 1214 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  80. D.W. Berreman, Phys. Rev. 130, 2193 (1963)

    Article  ADS  Google Scholar 

  81. W.D. Newman, C.L. Cortes, J. Atkinson, S. Pramanik, R.G. Decorby, Z. Jacob, ACS Photon. 2, 2 (2015)

    Article  Google Scholar 

  82. E. Kretschmann, H. Raether, Z. Für Naturforschung A 23, 2135 (1968)

    Article  ADS  Google Scholar 

  83. A. Otto, E. Burstein, F. Demartina, The surface polariton response in attenuated total reflection. In: Polaritons: Proceedings of the First Taormina Research Conference on the Structure of Matter, (Pentagon, New York, 1974), pp. 117–121

  84. A. Anopchenko, L. Tao, C. Arndt, H.W.H. Lee, ACS Photon. 5, 2631 (2018)

    Article  Google Scholar 

  85. A.P. Vinogradov, A.V. Dorofeenko, A.A. Pukhov, A.A. Lisyansky, Phys. Rev. B 97, 235407 (2018)

    Article  ADS  Google Scholar 

  86. S. Vassant, J.-P. Hugonin, F. Marquier, J.-J. Greffet, Opt. Express 20, 23971 (2012)

    Article  ADS  Google Scholar 

  87. E.L. Runnerstrom, K.P. Kelley, E. Sachet, C.T. Shelton, J.P. Maria, ACS Photon. 4, 1885 (2017)

    Article  Google Scholar 

  88. E.G. Carnemolla, L. Caspani, C. DeVault, M. Clerici, S. Vezzoli, V. Bruno, V.M. Shalaev, D. Faccio, A. Boltasseva, M. Ferrera, Opt. Mater. Express 8, 3392 (2018)

    Article  ADS  Google Scholar 

  89. Y. Yang, J. Lu, A. Manjavacas, T.S. Luk, H. Liu, K. Kelley, J.P. Maria, E.L. Runnerstrom, M.B. Sinclair, S. Ghimire, I. Brener, Nat. Phys. 15, 1022 (2019)

    Article  Google Scholar 

  90. D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, J. Solis, J. Opt. Soc. Am. B 27, 1065 (2010)

    Article  ADS  Google Scholar 

  91. R.J. Kirby, A. Ferrenti, C. Weinberg, S. Klemenz, M. Oudah, S. Lei, C.P. Weber, D. Fausti, G.D. Scholes, L.M. Schoop, J. Phys. Chem. Lett. 11, 6105 (2020)

    Article  Google Scholar 

  92. J. Kuttruff, D. Garoli, J. Allerbeck, R. Krahne, A. de Luca, D. Brida, V. Caligiuri, N. Maccaferri, Commun. Phys. 3, 114 (2020)

    Article  Google Scholar 

  93. V. Bruno, S. Vezzoli, C. DeVault, E. Carnemolla, M. Ferrera, A. Boltasseva, V.M. Shalaev, D. Faccio, M. Clerici, C. de Vault, E. Carnemolla, M. Ferrera, A. Boltasseva, V.M. Shalaev, D. Faccio, M. Clerici, Appl. Sci. 10, 1318 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This tutorial includes work that was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0017717, the Office of Naval Research under Award N00014-20-1-2199, and the Air Force Office of Scientific Research under Award FA9550-18-1-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colton Fruhling.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fruhling, C., Ozlu, M.G., Saha, S. et al. Understanding all-optical switching at the epsilon-near-zero point: a tutorial review. Appl. Phys. B 128, 34 (2022). https://doi.org/10.1007/s00340-022-07756-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07756-4

Navigation