Skip to main content
Log in

Improving the temperature uncertainty of \( {\text{Mg}}_{4} {\text{FGeO}}_{6} {\text{:Mn}}^{{4 + }} \) ratio-based phosphor thermometry by using a multi-objective optimization procedure

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Surface phosphor thermometry is an attractive remote temperature diagnostic to study heat and mass transfer processes. The spectral intensity ratio method enables to obtain two-dimensional temperature measurements with good spatial resolution, but suffers from sources of uncertainties that limit its use in terms of temperature uncertainties. This study aims to evaluate the improvement of the temperature uncertainty of the Mg4FGeO6:Mn4+ ratio-based phosphor thermometry when selecting different optical filters for the detection. This selection is done with the use of a numerical optimization procedure and multiple objective functions. Assuming a shot-noise limited regime for the phosphorescence signals, a series of experimental phosphorescence spectra recorded at various temperatures are combined with different virtual optical filters in order to minimize the relative temperature uncertainty as well as its standard deviation on the 300–750 K temperature range. The best combination of optical filters is composed of a filter centered on the 660 nm emission band, the other one being shifted towards the red wing. A further analysis indicates that the relative sensitivity is favored while the signal-to-ratios are fairly constant. A parametric study on the impact of the multi-objective function as well as the extent of the explored temperature range highlights that the mean temperature uncertainty criterion mainly drives the optimization procedure, notably with a weighting given to high-temperature spectral properties. Finally, a realistic temperature imaging arrangement composed of an ICCD camera, an image doubler and commercial bandpass filters, validates this new strategy. The relative temperature uncertainty is \(\approx 2.9\,\%\) between 300 and 750 K offering enhanced performances (up to three times) when compared to usual optical filters reported in the literature and centered on the two main emission bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Luo, X. Yu, M. Jansons, SAE Technical Paper (SAE International, 2015)

  2. W. Zhou, D. Peng, Y. Liu, H. Hu, Exp. Therm. Fluid Sci. 101, 16 (2019)

    Article  Google Scholar 

  3. M. Arulprakasajothi, P.L. Rupesh, Int. J. Ambient Energy 0, 1 (2020)

    Article  Google Scholar 

  4. C. Lempereur, R. Andral, J. Prudhomme, Meas. Sci. Technol. 19(10), 105501 (2008)

    Article  ADS  Google Scholar 

  5. T. Liu, J.P. Sullivan, Pressure and temperature sensitive paints, 1st edn. (Springer-Verlag, Berlin Heidelberg, 2005)

    Google Scholar 

  6. S. Lu, J. Sun, Y. Wang, W. Yu, M. Sun, S. Cui, J. Rare Earths 36(6), 669 (2018)

    Article  Google Scholar 

  7. S.W. Allison, G.T. Gillies, Rev. Sci. Instrum. 68(7), 2615 (1997)

    Article  ADS  Google Scholar 

  8. M. Aldén, A. Omrane, M. Richter, G. Särner, Prog. Energy Combust. Sci. 37(4), 422 (2011)

    Article  Google Scholar 

  9. J. Brübach, C. Pflitsch, A. Dreizler, B. Atakan, Prog. Energy Combust. Sci. 39(1), 37 (2013)

    Article  Google Scholar 

  10. M.D. Dramićanin, J. Appl. Phys. 128(4), 040902 (2020)

    Article  ADS  Google Scholar 

  11. Z. Ayers, J. Fisher, A. Brown, S.F. Son, T.R. Meyer, AIAA Scitech 2019 Forum (AIAA Scitech 2019 Forum, 2019)

  12. T. Kissel, E. Baum, A. Dreizler, J. Brübach, Appl. Phys. B 96, 731 (2009)

    Article  ADS  Google Scholar 

  13. N. Fuhrmann, J. Brübach, A. Dreizler, Proc. Combust. Inst. 34(2), 3611 (2013)

    Article  Google Scholar 

  14. A. Omrane, F. Ossler, M. Aldén, Exp. Therm. Fluid Sci. 28(7), 669 (2004)

    Article  Google Scholar 

  15. T. Cai, D. Peng, Y.Z. Liu, X.F. Zhao, K.C. Kim, Exp. Therm. Fluid Sci. 80, 53 (2017)

    Article  Google Scholar 

  16. A. Mendieta, B. Fond, P. Dragomirov, F. Beyrau, Meas. Sci. Technol. 30, 074002 (2019)

    Article  ADS  Google Scholar 

  17. A. Heyes, S. Seefeldt, J. Feist, Opt. Laser Technol. 38(4), 257 (2006)

    Article  ADS  Google Scholar 

  18. M. Lawrence, H. Zhao, L. Ganippa, Opt. Express 21(10), 12260 (2013)

    Article  ADS  Google Scholar 

  19. A. Sposito, E. Heaps, G. Sutton, G. Machin, R. Bernard, S. Clarke, Nucl. Eng. Des. 375, 111091 (2021)

    Article  Google Scholar 

  20. B. Fond, C. Abrams, F. Beyrau, Appl. Phys. B 121, 495 (2015)

    Article  ADS  Google Scholar 

  21. H. Lee, B. Böhm, A. Sadiki, A. Dreizler, Appl. Phys. B 122, 1 (2016)

    Google Scholar 

  22. N. Ishiwada, E. Fujii, T. Yokomori, J. Lumin. 196, 492 (2018)

    Article  Google Scholar 

  23. C. Abram, B. Fond, F. Beyrau, Opt. Express 23(15), 19453 (2015)

    Article  ADS  Google Scholar 

  24. B. Fond, C. Abram, M. Pougin, F. Beyrau, Opt. Mater. 89, 615 (2019)

    Article  ADS  Google Scholar 

  25. C. Abram, I.W. Panjikkaran, S.N. Ogugua, B. Fond, Opt. Lett. 45(14), 3893 (2020)

    Article  ADS  Google Scholar 

  26. K. Tsuchiya, K. Sako, N. Ishiwada, T. Yokomori, Meas. Sci. Technol. 31(6), 065005 (2020)

    Article  ADS  Google Scholar 

  27. C. Abram, B. Fond, F. Beyrau, Prog. Energy Combust. Sci. 64, 93 (2018)

    Article  Google Scholar 

  28. J. Branke, K. Deb, K. Miettinen, R. Slowiński (eds.), Multiobjective optimization, interactive and evolutionary approaches, vol. 5252, 1st edn. (Springer, 2008)

    MATH  Google Scholar 

  29. R. Marler, J. Arora, Survey of multi-objective optimization methods for engineering. Struct. Multidisc. Optim. 26, 369–395 (2004). https://doi.org/10.1007/s00158-003-0368-6

    Article  MathSciNet  MATH  Google Scholar 

  30. T. Marler, J. Arora, Struct. Multidiscip. Optim. 4(1), 853 (2010)

    Article  Google Scholar 

  31. T. Cai, Y. Li, S. Guo, D. Peng, X. Zhao, Y. Liu, Meas. Sci. Technol. 30, 027001 (2019)

    Article  ADS  Google Scholar 

  32. P. Xavier, L. Selle, G. Oztarlik, T. Poinsot, Exp. Fluids 59(2), 33 (2018)

    Article  Google Scholar 

  33. T.C. Chi, G. Zhai, S. Kook, Q.N. Chan, E.R. Hawkes, Exp. Fluids 60(2), 34 (2019)

    Article  Google Scholar 

  34. Z. Yin, P. Nau, W. Meier, Exp. Therm. Fluid Sci. 82, 50 (2017)

    Article  Google Scholar 

  35. B. Atakan, D. Roskosch, Proc. Combust. Inst. 34(2), 3603 (2013)

    Article  Google Scholar 

  36. C. Knappe, M. Algotsson, P. Andersson, M. Richter, M. Tunér, B. Johansson, M. Aldén, Combust. Flame 160(8), 1466 (2013)

    Article  Google Scholar 

  37. J. Lindén, C. Knappe, M. Richter, M. Aldén, Meas. Sci. Technol. 23, 035201 (2012)

    Article  ADS  Google Scholar 

  38. A. Taylor (ed.), Instrumentation for flows with combustion (Academic Press Inc, 1993)

    Google Scholar 

  39. S. Adachi, ECS J. Solid State Sci. Technol. 9(1), 016001 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by ANR (Agence Nationale de la Recherche) under the project WALL-EE (ANR-19-CE05–0007), as well as the Normandy Region and the ERDF (European Regional Development Fund) project PERCEVAL 2. The authors thank B. Barviau and D. Lebrun for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradip Xavier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petit, S., Xavier, P., Godard, G. et al. Improving the temperature uncertainty of \( {\text{Mg}}_{4} {\text{FGeO}}_{6} {\text{:Mn}}^{{4 + }} \) ratio-based phosphor thermometry by using a multi-objective optimization procedure. Appl. Phys. B 128, 57 (2022). https://doi.org/10.1007/s00340-021-07733-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07733-3

Navigation