Skip to main content
Log in

Tri-band high-efficiency circular polarization convertor based on double-split-ring resonator structures

  • Rapid Communication
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, we present an effective design of a tri-band high-efficiency circular polarization (CP) convertor based on double-split-ring resonator (DSRR) structures in the microwave region. The proposed CP convertor is composed of a periodic array of sub-wavelength tri-layered DSRR structures separated by a dielectric spacer, which can convert the normal incident CP wave to its orthogonal one at the three different resonance frequencies. Numerical simulation results indicate that the cross-polarization transmission coefficients of CP wave can achieve maximum values of 0.81 at 6.95 GHz, 0.65 at 10.55 GHz, and 0.81 at 12.85 GHz, respectively, which is in reasonable agreement with experiment. In addition, the corresponding CP conversion efficiency is over 90% at three different resonance frequencies. The simulated surface current distributions indicate that the high-efficient CP conversion properties are mainly attributed to the near field electric and magnetic dipole coupling between the adjacent DSRR layers. Due to its excellent tri-band CP properties, the proposed structure would find potential applications in the fields of remote sensing, radar, and satellite communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. C.M. Soukoulis, M. Kafesaki, E.N. Economou, Negative-index materials: new frontiers in optics. Adv. Mater. 18, 1941–1952 (2006)

    Article  Google Scholar 

  2. Y. Cheng, H. Yang, Y. Nie, R. Gong, Z. Cheng, Investigation of negative index properties of planar metamaterials based on split-ring pairs. Appl. Phys. A 103, 989–994 (2011)

    Article  ADS  Google Scholar 

  3. F. Monticone, C.A. Valagiannopoulos, A. Alù, Parity-time symmetric nonlocal metasurfaces: all-angle negative refraction and volumetric imaging. Phys. Rev. X 6(4), 041018 (2016)

    Google Scholar 

  4. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100(20), 207402 (2008)

    Article  ADS  Google Scholar 

  5. C.M. Watts, X. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers. Adv. Mater. 24(23), 98–120 (2012)

    Google Scholar 

  6. Y.Z. Cheng, M.L. Huang, H.R. Chen, Z.Z. Guo, X.S. Mao, R.Z. Gong, Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves. Materials (Basel). 10(6), 591 (2017)

    Article  ADS  Google Scholar 

  7. V.A. Fedotov, P.L. Mladyonov, S.L. Prosvirnin, A.V. Rogacheva, Y. Chen, N.I. Zheludev, Asymmetric propagation of electromagnetic waves through a planar chiral structure. Phys. Rev. Lett. 97(16), 167401 (2006)

    Article  ADS  Google Scholar 

  8. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, N. I. Zheludev, Terahertz metamaterial with asymmetric transmission. Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153104 (2009).

  9. C. Pfeiffer, C. Zhang V. Ray, L. J. Guo, A. Grbic, High performance bianisotropic metasurfaces: asymmetric transmission of light. Phys. Rev. Lett. 113, 023902 (2014)

  10. R. Rajkumar, N. Yogesh, V. Subramanian, Cross polarization converter formed by rotated-arm-square chiral metamaterial. J. Appl. Phys. 114, 224506 (2013).

  11. E. Plum, V. Fedotov, N. Zheludev, Planar metamaterial with transmission and reflection that depend on the direction of incidence. Appl. Phys. Lett. 94, 131901 (2009).

  12. K. Xu, Z. Xiao, J. Tang, D. Liu, Z. Wang, Ultra-broad band and dual-band highly efficient polarization conversion based on the three-layered chiral structure. Physica E. 81, 169–176 (2016)

    Article  ADS  Google Scholar 

  13. S.T. Xu, F.T. Hu, M. Chen, F. Fan, S.J. Chang, Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating. Ann. Phys. 529(10), 1700151 (2017)

    Article  Google Scholar 

  14. Y.Z. Cheng, R. Gong, L. Wu, Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves. Plasmonics 12(4), 1113–1120 (2017)

    Article  Google Scholar 

  15. J.H. Shi, Q.C. Shi, Y.X. Li, G.Y. Nie, C.Y. Guan, Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality. Sci. Rep. 5, 16666 (2015)

    Article  ADS  Google Scholar 

  16. J.G. Yun, S.J. Kim, H. Yun, K. Lee, J. Sung, J. Kim, Y. Lee, B. Lee, Broadband ultrathin circular polarizer at visible and near-infrared wavelengths using a non-resonant characteristic in helically stacked nano-gratings. Opt. Express 25(13), 14260–14269 (2017)

    Article  ADS  Google Scholar 

  17. S.E. Mun, J. Hong, J.G. Yun, B. Lee, Broadband circular polarizer for randomly polarized light in fewlayer metasurface. Sci. Rep. 9, 2543 (2019)

    Article  ADS  Google Scholar 

  18. H. Zou, Z. Xiao, W. Li, C. Li, Double-use linear polarization convertor using hybrid metamaterial based on VO2 phase transition in the terahertz region. Appl. Phys. A 124, 322 (2018)

    Article  ADS  Google Scholar 

  19. Z. Cheng, Y. Cheng, A multi-functional polarization convertor based on chiral metamaterial for terahertz waves. Opt. Commun. 435, 178–182 (2019)

    Article  ADS  Google Scholar 

  20. C. Pfeiffer, C. Zhang, V. Ray, L.J. Guo, A. Grbic, Polarization rotation with ultra-thin bianisotropic metasurfaces. Optica. 3(4), 427–432 (2016)

    Article  ADS  Google Scholar 

  21. J. Fan, Y. Cheng, B. He, High-Efficiency ultrathin terahertz geometric metasurface for full-space wavefront manipulation at two frequencies. J. Phys. D: Appl. Phys. 54(11), 115101 (2021)

    Article  ADS  Google Scholar 

  22. Z. Wu, Y. Ra'di, A. Grbic, Tunable metasurfaces A polarization rotator design. Phys. Rev. X. 9, 011036 (2019)

  23. E. Zhou, Y. Cheng, F. Chen, H. Luo, Wideband and high-gain patch antenna with reflective focusing metasurface. AEU-Int. J. Electron. Commun. 134, 153709 (2021).

  24. P. Zhang, M. Zhao, L. Wu, Z. Lu, Z. Xie, Y. Zheng, J. Duan, Z. Yang, Giant circular polarization conversion in layer-by-layer nonchiral metamaterial. J. Opt. Soc. Am. A. 30(9), 1714–1718 (2013)

    Article  ADS  Google Scholar 

  25. L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. Duan, X. H. Yuan, Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials. Appl. Phys. Lett. 103(2), 021903 (2013).

  26. X. Wu, Y. Meng, L. Wang, J. Tian, S. Dai, W. Wen, Anisotropic metasurface with near-unity circular polarization conversion. Appl. Phys. Lett. 108(18), 183502 (2016).

  27. J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, J. Tian, High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces. Adv. Opt. Mater. 4(12), 2028–2034 (2016)

    Article  Google Scholar 

  28. R. Ji, S.W. Wang, X. Liu, W. Lu, Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities. Nanoscale 8(15), 8189–8194 (2016)

    Article  ADS  Google Scholar 

  29. D.F. Tang, C. Wang, W.K. Pan, M.H. Li, J.F. Dong, Broad dual-band asymmetric transmission of circular polarized waves in near-infrared communication band. Opt. Express 25(10), 11329 (2017)

    Article  ADS  Google Scholar 

  30. Y. Cheng, J. Fan, H. Luo, F. Chen, N. Feng, X. Mao, R. Gong, Dual-band and high-efficiency circular polarization conversion via asymmetric transmission with anisotropic metamaterial in the terahertz region. Opt. Mater. Express. 9(3), 1365–1376 (2019)

    Article  ADS  Google Scholar 

  31. Y. Cheng, J. Fan, H. Luo, F. Chen, Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial. IEEE Access. 8, 7615–7621 (2020)

    Article  Google Scholar 

  32. W. Guo, G. Wang, S. Ding, H. Li, T. Cai, Utra-thin anisotropic transmitting metasurface for polarization beam splitter application. Chin. Phys. B. 25(8), 084101 (2016)

    Article  ADS  Google Scholar 

  33. X. Wu, X. Gao, L. Tang, High-efficiency ultra-thin polarization converter based on planar anisotropic transmissive metasurface. AEU-Int. J. Electron. Commun. 118, 153141 (2020)

    Article  Google Scholar 

  34. P. Fei, G.A.E. Vandenbosch, W. Guo, X. Wen, D. Xiong, W. Hu, Q. Zheng, X. Chen, Versatile cross-polarization conversion chiral metasurface for linear and circular polarizations. Adv. Optical Mater. 8(13), 2000194 (2020)

    Article  Google Scholar 

  35. B. Han, S. Li, Z. Li, G. Huang, J. Tian, X. Cao, Asymmetric transmission for dual-circularly and linearly polarized waves based on a chiral metasurface. Opt. Express 29(13), 19643–19654 (2021)

    Article  ADS  Google Scholar 

  36. J. Zhao, Y. Cheng, Ultra-broadband and high-efficiency reflective linear polarization convertor based on planar anisotropic metamaterial in microwave region. Optik 136, 52–57 (2017)

    Article  ADS  Google Scholar 

  37. Q. Zheng, C. Guo, P. Yuan, Y. Ren, J. Ding, Wideband and high-efficiency reflective polarization conversion metasurface based on anisotropic metamaterials. J. Electron. Mater. 47(5), 2658–2666 (2018)

    Article  Google Scholar 

  38. B. Lin, J. Guo, P. Chu, W. Huo, Z. Xing, B. Huang, L. Wu, Multiple-band linear-polarization conversion and circular polarization in reflection mode using a symmetric anisotropic metasurface. Phys. Rev. Appl. 9, 024038 (2018)

    Article  ADS  Google Scholar 

  39. M.I. Khan, Y. Chen, B. Hu, N. Ullah, S. Bukhari, S. Iqbal, Multiband linear and circular polarization rotating metasurface based on multiple plasmonic resonances for C, X and K band applications. Sci. Rep. 10, 17981 (2020)

    Article  Google Scholar 

  40. Y. Cheng, X. Zhu, J. Li, F. Chen, H. Luo, L. Wu, Terahertz broadband tunable refecltive cross-polarization convertor based on complementary cross-shaped graphene metasurface. Physica E. 134, 114893 (2021)

    Article  Google Scholar 

  41. Y. Cheng, J. Wang, Tunable terahertz circular polarization convertor based on anisotropic graphene metamaterial. Diamond Relat. Mater. 119, 108559 (2021)

    Article  ADS  Google Scholar 

  42. N.K. Grady, J.E. Heyes, D.R. Chowdhury, Y. Zeng, M.T. Reiten, A.K. Azad, A.J. Taylor, D.A.R. Dalvit, H.T. Chen, Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340, 1304–1307 (2013)

    Article  ADS  Google Scholar 

  43. C. Menzel, C. Rockstuhl, F. Lederer, Advanced Jones calculus for the classification of periodic metamaterials. Phys. Rev. A 82, 053811 (2010)

    Article  ADS  Google Scholar 

  44. V.A. Fedotov, M. Rose, S.L. Prosvirnin, N. Papasimakis, N.I. Zheludev, Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 99, 147401 (2007)

    Article  ADS  Google Scholar 

  45. N. Liu, H. Liu, S. Zhu, H. Giessen, Stereometamaterials. Nat. Photon. 3, 157 (2009)

    Article  ADS  Google Scholar 

  46. J.H. Shi, H.F. Ma, W.X. Jiang, T.J. Cui, Multiband stereometamaterial-based polarization spectral filter. Phys. Rev. B. 86, 035103–035105 (2012)

    Article  ADS  Google Scholar 

  47. Y. Cheng, J. Zhao, X. Mao, R. Gong, Ultrabroadband diode-like asymmetric transmission and high-efficiency cross-polarization conversion based on composite chiral metamaterial. Progress Electromagn. Res. 160, 89–101 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the Natural Science Foundation Innovation Group Project of Hubei China (Grant No. 2020CFA0038) and Wuhan University of Science and Technology University Student Innovation Fund (Grant No. JCX2020100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhi Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Yu, J. & Li, X. Tri-band high-efficiency circular polarization convertor based on double-split-ring resonator structures. Appl. Phys. B 128, 1 (2022). https://doi.org/10.1007/s00340-021-07724-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07724-4

Navigation