Skip to main content
Log in

A novel focal spot positioning method for high peak power lasers

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The precise positioning of focal spots plays a crucial role in laser–matter interactions, especially for strong field physics requiring high laser focused intensity. A novel method based on the porous mask is proposed to directly positioning the focal spots of high peak power lasers. In this method, a porous mask is introduced before the laser compressor to substantially weaken laser energy while without changing laser-focusing characteristic, and different levels of energy attenuation can be easily realized by optimizing the porous mask. In addition, proof-of-principle experiments have also been carried out in high peak power femtosecond lasers up to hundreds-terawatt (TW), and the results efficiently demonstrate the validity and feasibility of this method. To our knowledge, it is the first time to achieve the direct positioning of the focal spots of high peak power lasers, which can efficiently facilitate the experimental investigations of strong field laser–matter interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 55(3), 219–221 (1985)

    Article  ADS  Google Scholar 

  2. A. Dubietis, G. Jonušauskas, A. Piskarskas, Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Opt. Commun. 88(4–6), 437–440 (1992)

    Article  ADS  Google Scholar 

  3. F. Lureau, G. Matras, O. Chalus, C. Derycke, T. Morbieu, C. Radier, O. Casagrande, S. Laux, S. Ricaud, G. Rey, A. Pellegrina, C. Richard, L. Boudjemaa, C. Simon-Boisson, A. Baleanu, R. Banici, A. Gradinariu, C. Caldararu, B.D. Boisdeffre, P. Ghenuche, A. Naziru, G. Kolliopoulos, L. Neagu, R. Dabu, I. Dancus, D. Ursescu, High-energy hybrid femtosecond laser system demonstrating 2×10 PW capability. High. Power Laser Sci. Eng. 8(4), e43 (2020)

    Article  Google Scholar 

  4. M. Galletti, P. Oliveira, M. Galimberti, M. Ahmad, G. Archipovaite, N. Booth, E. Dilworth, A. Frackiewicz, T. Winstone, I. Musgrave, C.H. Gomez, Ultra-broadband all-OPCPA petawatt facility fully based on LBO. High Power Laser Sci. Eng. 8(4), e31 (2020)

    Article  Google Scholar 

  5. H. Kiriyama, A.S. Pirozhkov, M. Nishiuchi, Y. Fukuda, K. Ogura, A. Sagisaka, Y. Miyasaka, M. Mori, H. Sakaki, N.P. Dover, K. Kondo, J.K. Koga, T.Z. Esirkepov, M. Kando, K. Kondo, High-contrast high-intensity repetitive petawatt laser. Opt. Lett. 43, 2595–2598 (2018)

    Article  ADS  Google Scholar 

  6. W. Li, Z. Gan, L. Yu, C. Wang, Y. Liu, Z. Guo, L. Xu, M. Xu, Y. Hang, Y. Xu, J. Wang, P. Huang, H. Cao, B. Yao, X. Zhang, L. Chen, Y. Tang, S. Li, X. Liu, S. Li, M. He, D. Yin, X. Liang, Y. Leng, R. Li, Z. Xu, 339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility. Opt. Lett. 43, 5681–5684 (2018)

    Article  ADS  Google Scholar 

  7. G. Mario, P. Hugo, H. Victor, A. Joana, O. Pedro, G. Marco, F. Goncalo, Ultra-broadband near-infrared NOPAs based on the nonlinear crystals BiBO and YCOB. High Power Laser Sci. Eng. 8(3), e29 (2020)

    Google Scholar 

  8. K. Nakamura, H.S. Mao, A.J. Gonsalves, H. Vincenti, D.E. Mittelberger, J. Daniels, A. Magana, C. Toth, W.P. Leemans, Diagnostics, control and performance parameters for the BELLA high repetition rate petawatt class laser. IEEE J. Quantum Elect. 53(4), 1–21 (2017)

    Article  Google Scholar 

  9. Z. Zhang, F. Wu, J. Hu, X. Yang, J. Gui, X. Liu, C. Wang, Y. Liu, X. Lu, Y. Xu, Y. Leng, R. Li, Z. Xu, The 1 PW / 0.1 Hz laser beamline in SULF facility. High Power Laser Sci. Eng. 8(1), e4 (2020)

    Article  Google Scholar 

  10. J.W. Yoon, Y.G. Kim, I.W. Choi, J.H. Sung, H.W. Lee, S.K. Lee, C.H. Nam, Realization of laser intensity over 1023W/cm2. Optica 8(5), 630–635 (2021)

    Article  ADS  Google Scholar 

  11. D. Wang, Y. Shou, P. Wang, J. Liu, Z. Mei, Z. Cao, J. Zhang, P. Yang, G. Feng, S. Chen, Y. Zhao, J. Schreiber, W. Ma, Laser-induced damage thresholds of ultrathin targets and their constraint on laser contrast in laser-driven ion acceleration experiments. High. Power Laser Sci. Eng. 8(4), e41 (2020)

    Article  Google Scholar 

  12. X. Wang, G. Hu, Z. Zhang, Y. Gu, B. Zhao, Y. Zuo, J. Zheng, Gamma-ray generation from ultraintense laser-irradiated solid targets with preplasma. High Power Laser Sci. Eng. 8(4), e34 (2020)

    Article  Google Scholar 

  13. M. Roth, T.E. Cowan, M.H. Key, S.P. Hatchett, C. Brown, W. Fountain, J. Johnson, D.M. Pennington, R.A. Snavely, S.C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S.V. Bulanov, E.M. Campbell, M.D. Perry, H. Powell, Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86(3), 436–439 (2001)

    Article  ADS  Google Scholar 

  14. A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431(7005), 162–167 (2004)

    Article  ADS  Google Scholar 

  15. F. Wu, L. Yu, J. Lu, W. Li, Y. Xu, Y. Leng, Suppression of thermal lens effect in high-pulse-energy Ti: sapphire amplifiers. Opt. Laser Tech. 87, 94–98 (2017)

    Article  ADS  Google Scholar 

  16. V. Hariton, C.P. Joao, H. Pires, M. Galletti, G. Figueira, Thermal lens analysis in a diode-pumped 10Hz 100mJ Yb:YAG amplifier. High Power Laser Sci. Eng. 8(2), e13 (2020)

    Article  Google Scholar 

  17. V. Chvykov, K. Krushelnick, Transeverse amplified spontaneous emission: the limitation factor for output energy of ultra-high power lasers. Opt. Commun. 285(8), 2134–2136 (2012)

    Article  ADS  Google Scholar 

  18. J.W. Yoon, C. Jeon, J. Shin, S.K. Lee, H.W. Lee, I.W. Choi, H.T. Kim, J.H. Sung, C.H. Nam, Achieving the laser intensity of 5.5×1022W/cm2 with a wavefront-corrected multi-PW laser. Opt. Express 27(15), 20412–20420 (2019)

    Article  ADS  Google Scholar 

  19. F. Wu, Z. Zhang, X. Yang, J. Hu, P. Ji, J. Gui, C. Wang, J. Chen, Y. Peng, X. Liu, Y. Liu, X. Lu, Y. Xu, Y. Leng, R. Li, Z. Xu, Performance improvement of a 200TW/1Hz Ti:sapphire laser for laser wakefield electron accelerator. Opt. Laser Technol. 131, 106453 (2020)

    Article  Google Scholar 

  20. H.T. Powell, J.A. Caird, J.E. Murray et al., Laser improvements for the precision Nova project. ICF Quart. Rep. 1(4), 169–177 (1991)

    Google Scholar 

  21. X. Cai, F. Xu, Z. Lin, J. Yang, An assemble of a half-wave plate and polarizers for precision controlled attenuator. Chin. J. Lasers 26(1), 47–51 (1999)

    Google Scholar 

  22. T. Yu, X. Cai, R. Liu, L. Tang, J. Bi, Z. Lin, Study on the precision energy measurement system for high power laser. Chin. J. Lasers 29(3), 267–270 (2002)

    Google Scholar 

  23. D. Li, X. Ke, H. Jing, C. Ping, P. Zhang, J. Zhou, Analysis on the Fraunhofer diffraction of random distributed holes. College Phys. 28(8), 35–41 (2009)

    Google Scholar 

  24. Y. Zhang, Study of multi circular holes Fraunhofer diffraction and visualization of diffraction patterns. Phys. Exp. College 30(5), 63–66 (2017)

    Google Scholar 

  25. F. Wu, Z. Zhang, X. Yang, J. Hu, Y. Xu, Y. Leng, Directly measuring the pulse front distortion of high-peak-power femtosecond lasers. Appl. Sci. 10, 8586 (2020)

    Article  Google Scholar 

  26. Z. Bor, Distortion of femtosecond laser pulses in lenses and lens systems. J. Mod. Opt. 35, 1907–1918 (1988)

    Article  ADS  Google Scholar 

Download references

Funding

National Natural Science Foundation of China (61925507), National Key R&D Program of China (2017YFE0123700), Strategic Priority Research Program of Chinese Academic Science (XDB1603), Shanghai Municipal Science and Technology Major Project (2017SHZDZX02), Shanghai Natural Science Foundation (20ZR1464600), Program of Shanghai Academic/Technology Research Leader (18XD1404200), Shanghai Sailing Program (21YF1453800), and Youth Innovation Promotion Association of CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxin Leng.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Zhang, Z., Hu, J. et al. A novel focal spot positioning method for high peak power lasers. Appl. Phys. B 128, 4 (2022). https://doi.org/10.1007/s00340-021-07720-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07720-8

Navigation