Skip to main content
Log in

Optical radiation losses of metal-coated optical fibers at different wavelengths

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A novel approach to the sensitive measurements of optical loss coefficients in metal-coated fibers in a wide wavelength range is introduced. It is based on measuring the change of temperature-dependent electrical resistance of the coating caused by laser radiation transmitted through the fiber. A number of single-mode and multimode metal-coated fibers were investigated using several laser sources operating in visible and near-infrared ranges. A novel approach to the sensitive measurements of optical loss coefficients in metal-coated fibers in a wide wavelength range is introduced. It is based on measuring the change of temperature-dependent electrical resistance of the coating caused by laser radiation transmitted through the fiber. A number of single-mode and multimode metal-coated fibers were investigated using several laser sources operating in visible and near-infrared ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Mendez, T. F. Morse: Specialty Optical Fibers Handbook (Academic Press, 2007)

  2. I. Khramov, R. Shaidullin, O. Ryabushkin, Opt. Eng. 58, 1 (2019)

    Article  Google Scholar 

  3. N. Vanyushkin, N. Tereshchenko, A. Kostrov, P. Cherpak, D. Mukhankov, R. Shaidullin, O. Ryabushkin, Proc. SPIE 11199, 1119939 (2019)

    Google Scholar 

  4. Y. Feng, H. Zhang, Y.L. Li, C.F. Rao, IEEE ASME Trans. Mechatron. 15, 511–519 (2010)

    Article  Google Scholar 

  5. C. Wen, Y. Li, J. Mod. Opt. 63, 762–770 (2016)

    Article  ADS  Google Scholar 

  6. Y. Li, K. Yang, X. Li, Opt. Fiber Technol. 45, 368–375 (2018)

    Article  ADS  Google Scholar 

  7. C.M. Petrie, N. Sridharan, M. Subramanian, A. Hehr, M. Norfolk, J. Sheridan: Smart Mater. Struct. 28 (2019)

  8. J.M.O. Daniel, N. Simakov, A. Hemming, W.A. Clarkson, J. Haub, Opt. Express. 24, 18592 (2016)

    Article  ADS  Google Scholar 

  9. C.X. Yu, O. Shatrovoy, T.Y. Fan, T.F. Taunay, Opt. Lett. 41, 5202 (2016)

    Article  ADS  Google Scholar 

  10. Q. He, F. Wang, Z. Lin, C. Shao, M. Wang, S. Wang, C. Yu, L. Hu: Chin. Opt. Lett. 17, 101401 (2019)

  11. S.T. Shiue, Y.S. Lin, J. Appl. Phys. 83, 5719–5723 (1998)

    Article  ADS  Google Scholar 

  12. M. Bass, E. Van Stryland: Fiber Optics Handbook—Fiber, Devices and Systems for Optical Communications (McGraw-Hill Professional, 2002).

  13. Specialty Fiber Preforms – HERAUS. https://www.heraeus.com/media/media/hca/doc_hca/products_and_solutions_8/optical_fiber/Specialty_Fiber_Preforms_EN.pdf (accessed September 14, 2021).

  14. V. Bogatytjov, E. Dianov, A. Biriukov, A. Sysoliatin, V. Voronov, A. Khitun, M. Hyun Do, J. Han Kim: OFC, 182–183 (1997)

  15. M.-A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, J.-N. Maran, Proc. SPIE 7195, 71951U (2009)

    Article  Google Scholar 

  16. J. Commun, V. v. Voloshin, I.L. Vorob’Ev, G.A. Ivanov, V.A. Isaev, A.O. Kolosovskii, B. Lenardich, S.M. Popov, Y.K. Chamorovskii. Technol. Electron. 56, 90–96 (2011)

    Google Scholar 

  17. S.M. Popov, V. v. Voloshin, I.L. Vorobyov, G.A. Ivanov, A.O. Kolosovskii, V.A. Isaev, Y.K. Chamorovskii: Opt. Mem. Neural Network, 21, 45–51 (2012)

  18. F.P. Incropera, D.P. DeWitt, T.L. Bergman, A.S. Lavine: Fundamentals of Heat and Mass Transfer (6th edition) (John Wiley & Sons; 6th Edition, 2007)

  19. K. Noguchi, N. Shibata, N. Uesugi, Y. Negishi, J. Light. Technol. 3, 236–243 (1985)

    Article  ADS  Google Scholar 

  20. P.J. Lemaire, Opt. Eng. 30, 780 (1991)

    Article  ADS  Google Scholar 

  21. K.E. Lu, G.S. Glaesemann, M.T. Lee, D.R. Powers, J.S. Abbott, Opt. Quant. Electron. 22, 227–237 (1990)

    Article  Google Scholar 

  22. S.L. Semjonov, V.A. Bogatyrev, A.A. Malinin: Proc. SPIE, 7839, 783912 (2010)

  23. J.M.O. Daniel, N. Simakov, A. Hemming, W.A. Clarkson, J. Haub, Proc. SPIE 10083, 100831Q (2017)

    Article  Google Scholar 

  24. S. Das, C.G. Englefield, P.A. Goud, Appl. Opt. 24, 2323 (1985)

    Article  ADS  Google Scholar 

  25. S. Hornung, N.J. Doran, R. Allen, Opt. Quant. Electron. 14, 359–362 (1982)

    Article  Google Scholar 

  26. P. Danielsen, Electron. Lett. 19, 318 (1983)

    Article  ADS  Google Scholar 

  27. W.B. Gardner, Bell Syst. Tech. J. 54, 457–465 (1975)

    Article  ADS  Google Scholar 

  28. K. Noguchi, Y. Murakami, K. Ishihara, Electron. Lett. 19, 1045 (1983)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the staff of the laboratory №226 of Fryazino branch of Kotelnikov Institute of Radioengineering and Electronics of RAS and Chamorovskiy Yu. K. for the provision of copper-coated fibers for the research and Alexey Konyashkin for assistance in editing the article.

Funding

The work was carried out within the framework of the state task.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Cherpak.

Ethics declarations

Conflict of interests

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherpak, P., Khramov, I., Shaidullin, R. et al. Optical radiation losses of metal-coated optical fibers at different wavelengths. Appl. Phys. B 127, 155 (2021). https://doi.org/10.1007/s00340-021-07709-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07709-3

Navigation