Skip to main content
Log in

Imaging with diffractive axicons rapidly milled on sapphire by femtosecond laser ablation

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Fabrication of large area (sub-1 cm cross-section) micro-optical components in a short period of time (~ 10 min) and with lesser number of processing steps is highly desirable and cost-effective. In the recent years, femtosecond laser fabrication technology has revolutionized the field of manufacturing by offering the above capabilities. In this study, a fundamental diffractive optical element, binary axicon–axicon with two phase or amplitude levels, has been designed in three configurations namely conventional axicon, photon sieve axicon (PSA) and sparse PSA and directly milled onto a sapphire substrate. The fabrication results revealed that a single pulse burst fabrication can produce a flatter and smoother profile than pulse overlapped fabrication which gives rise to surface damage and increased roughness. The fabricated elements were processed in IsoPropyl alcohol and potassium hydroxide to remove debris and redeposited amorphous sapphire. An incoherent illumination was used for optical testing of the components and a non-linear optical filter was used for cleaning the noisy images generated by the diffractive optical elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

PSA:

Photon sieve axicon

DOE:

Diffractive optical elements

FWHM:

Full width at half maximum

NLR:

Non-linear reconstruction

IPA:

Isopropyl alcohol

LED:

Light emitting diode

DOF:

Depth of focus

M:

Molar

KOH:

Potassium hydroxide

SEM:

Scanning electron microscope

UV:

Ultraviolet

IR:

Infrared

FBMS:

Fixed beam movable stage

NIR:

Near infrared

NA:

Numerical aperture

PSO:

Position sensitive output

References

  1. F.M. Dickey, S.C. Holswade, D.L. Shealy (eds.), Laser Beam Shaping Applications (CRC Press, Boca Raton, 2005)

    Google Scholar 

  2. A. Vijayakumar, S. Bhattacharya, Design and fabrication of diffractive optical elements with MATLAB (2017)

  3. J. Liang, R.N. Kohn Jr., M.F. Becker, D.J. Heinzen, High-precision laser beam shaping using a binary-amplitude spatial light modulator. Appl. Opt. 49(8), 1323–1330 (2010). https://doi.org/10.1364/ao.49.001323

    Article  ADS  Google Scholar 

  4. L. Wang, S. Kruk, H. Tang, T. Li, I. Kravchenko, D.N. Neshev, Y.S. Kivshar, Grayscale transparent metasurface holograms. Optica 3(12), 1504–1505 (2016). https://doi.org/10.1364/optica.3.001504

    Article  ADS  Google Scholar 

  5. A. Epstein, G.V. Eleftheriades, Huygens’ metasurfaces via the equivalence principle: design and applications. J. Opt. Soc. Am. B 33(2), A31–A50 (2016). https://doi.org/10.1364/josab.33.000a31

    Article  ADS  Google Scholar 

  6. A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Planar photonics with metasurfaces. Science 339(6125), 1232009–1232009 (2013). https://doi.org/10.1126/science.1232009

    Article  Google Scholar 

  7. A. Rubano, F. Cardano, B. Piccirillo, L. Marrucci, Q-plate technology: a progress review [Invited]. J. Opt. Soc. of Am. B 36(5), D70–D87 (2019). https://doi.org/10.1364/josab.36.000d70

    Article  Google Scholar 

  8. Y. Li, T. Zhan, Z. Yang, C. Xu, P.L. LiKamWa, K. Li, S.-T. Wu, Broadband cholesteric liquid crystal lens for chromatic aberration correction in catadioptric virtual reality optics. Opt. Express 29(4), 6011–6020 (2021). https://doi.org/10.1364/oe.419595

    Article  ADS  Google Scholar 

  9. A. Vijayakumar, B. Vinoth, I.V. Minin, J. Rosen, O.V. Minin, C.-J. Cheng, Experimental demonstration of square Fresnel zone plate with chiral side lobes. Appl. Opt. 56(13), F128–F133 (2017). https://doi.org/10.1364/ao.56.00f128

    Article  Google Scholar 

  10. F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, T.P. Kleinschmidt, E. Orselli, C. Rewitz, T. Rölle, G. Walze, Diffractive optics in large sizes: computer-generated holograms (CGH) based on Bayfol HX photopolymer. Adv. Display Technol. (2015). https://doi.org/10.1117/12.2077139

    Article  Google Scholar 

  11. J. Jahns, S. Sinzinger, Microoptics for biomedical applications. Am. Biotechnol. Lab. 11, 53–54 (2000)

    Google Scholar 

  12. J. Jahns, A. Huang, Planar integration of free-space optical components. Appl. Opt. 28(9), 1602–1605 (1989). https://doi.org/10.1364/ao.28.001602

    Article  ADS  Google Scholar 

  13. H. Misawa, T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8. Opt. Express 14(17), 7943–7953 (2006). https://doi.org/10.1364/oe.14.007943

    Article  ADS  Google Scholar 

  14. V. Anand, S.H. Ng, T. Katkus, S. Juodkazis, White light three-dimensional imaging using a quasi-random lens. Opt. Express 29(10), 15551–15563 (2021). https://doi.org/10.1364/oe.426021

    Article  ADS  Google Scholar 

  15. G. Seniutinas, G. Gervinskas, J. Anguita, D. Hakobyan, E. Brasselet, S. Juodkazis, Nano-proximity direct ion beam writing. Nanofabrication 2(1), 54–62 (2016). https://doi.org/10.1515/nanofab-2015-0006

    Article  Google Scholar 

  16. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, J. Nishii, Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt. Lett. 26(5), 277–279 (2001). https://doi.org/10.1364/ol.26.000277

    Article  ADS  Google Scholar 

  17. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, S. Juodkazis, Ultrafast laser processing of materials: from science to industry. Light Sci Appl 5(8), e16133 (2016). https://doi.org/10.1038/lsa.2016.133

    Article  ADS  Google Scholar 

  18. S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, H. Misawa, Formation of embedded patterns in glasses using femtosecond irradiation. Appl. Phys. A 79, 1549–1553 (2004). https://doi.org/10.1007/s00339-004-2845-1

    Article  ADS  Google Scholar 

  19. E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, H. Misawa, Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses. Appl. Phys. Lett. 82(17), 2901–2903 (2003). https://doi.org/10.1063/1.1570514

    Article  ADS  Google Scholar 

  20. J. Rosen, A. Vijayakumar, M. Kumar, M.R. Rai, R. Kelner, Y. Kashter, A. Bulbul, S. Mukherjee, Recent advances in self-interference incoherent digital holography. Adv. Opt. Photon. 11(1), 1–66 (2019). https://doi.org/10.1364/aop.11.000001

    Article  Google Scholar 

  21. Y. Kizuka, M. Yamaguchi, Y. Matsuoka, Characteristics of a laser beam spot focused by a binary diffractive axicon. Opt. Eng. 47(5), 053401 (2008). https://doi.org/10.1117/1.2919739

    Article  ADS  Google Scholar 

  22. S.N. Khonina, A.P. Porfirev, 3D transformations of light fields in the focal region implemented by diffractive axicons. Appl. Phys. B 124(9), 1–13 (2018). https://doi.org/10.1007/s00340-018-7060-4

    Article  ADS  Google Scholar 

  23. G. Gervinskas, G. Seniutinas, A. Vijayakumar, S. Bhattacharya, E. Jelmakas, A. Kadys, R. Tomašiūnas, S. Juodkazis, Fabrication and replication of micro-optical structures for growth of GaN-based light emitting diodes. Micro Nano Mater. Dev. Syst. (2013). https://doi.org/10.1117/12.2033709

    Article  Google Scholar 

  24. G. Andersen, D. Tullson, Broadband antihole photon sieve telescope. Appl. Opt. 46(18), 3706–3708 (2007). https://doi.org/10.1364/ao.46.003706

    Article  ADS  Google Scholar 

  25. V. Anand et al., All femtosecond optical pump and X-ray probe: Holey-Axicon for free electron laser. J. Phys. Photonics 3(2), 024002 (2021). https://doi.org/10.1088/2515-7647/abd4ef

    Article  ADS  Google Scholar 

  26. R. Menon, D. Gil, G. Barbastathis, H.I. Smith, Photon-sieve lithography. J. Opt. Soc. Am. A 22(2), 342–345 (2005). https://doi.org/10.1364/josaa.22.000342

    Article  ADS  Google Scholar 

  27. R. Janeiro, R. Flores, P. Dahal, J. Viegas, Fabrication of a phase photon sieve on an optical fiber tip by focused ion beam nanomachining for improved fiber to silicon photonics waveguide light coupling. Opt. Express 24(11), 11611–11625 (2016). https://doi.org/10.1364/oe.24.011611

    Article  ADS  Google Scholar 

  28. A. Vijayakumar, Y. Kashter, R. Kelner, J. Rosen, Coded aperture correlation holography—a new type of incoherent digital holograms. Opt. Express 24(11), 12430–12441 (2016). https://doi.org/10.1364/OE.24.012430

    Article  ADS  Google Scholar 

  29. A. Vijayakumar, J. Rosen, Interferenceless coded aperture correlation holography–a new technique for recording incoherent digital holograms without two-wave interference. Opt. Express 25(12), 13883–13896 (2017). https://doi.org/10.1364/OE.25.013883

    Article  ADS  Google Scholar 

  30. M.R. Rai, A. Vijayakumar, J. Rosen, Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I-COACH). Opt. Express 26(14), 18143–18154 (2018). https://doi.org/10.1364/oe.26.018143

    Article  ADS  Google Scholar 

  31. Y. Wan, C. Liu, T. Ma, Y. Qin, S. Lv, Incoherent coded aperture correlation holographic imaging with fast adaptive and noise-suppressed reconstruction. Opt. Express 29(6), 8064–8075 (2021). https://doi.org/10.1364/oe.418918

    Article  ADS  Google Scholar 

  32. A. Vijayakumar, T. Katkus, S. Lundgaard, D.P. Linklater, E.P. Ivanova, S.H. Ng, S. Juodkazis, Fresnel incoherent correlation holography with single camera shot. Opto Electron. Adv. 3(8), 200004 (2020). https://doi.org/10.29026/oea.2020

    Article  Google Scholar 

  33. R. Buividas, M. Mikutis, S. Juodkazis, Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances. Prog. Quantum Electron 38(3), 119–156 (2014). https://doi.org/10.1016/j.pquantelec.2014.03.002

    Article  ADS  Google Scholar 

  34. E.G. Gamaly, A.V. Rode, Ultrafast re-structuring of the electronic landscape of transparent dielectrics: new material states (Die-Met). Appl. Phys. A 124(3), 1–11 (2018). https://doi.org/10.1007/s00339-018-1693-3

    Article  Google Scholar 

  35. S. Juodkazis, Y. Nishi, H. Misawa, Femtosecond laser-assisted formation of channels in sapphire using KOH solution. Phys. Status Solidi R 2(6), 275–277 (2008). https://doi.org/10.1002/pssr.200802203

    Article  Google Scholar 

  36. V. Anand, S.H. Ng, J. Maksimovic, D. Linklater, T. Katkus, E.P. Ivanova, S. Juodkazis, Single shot multispectral multidimensional imaging using chaotic waves. Sci. Rep. 10(1), 13902 (2020). https://doi.org/10.1038/s41598-020-70849-7

    Article  Google Scholar 

  37. E. Vanagas, J. Kawai, D. Tuzilin, I. Kudryashov, A. Mizuyama, K.G. Nakamura, K. Kondo, S. Koshihara, M. Takesada, K. Matsuda, S. Juodkazis, V. Jarutis, S. Matsuo, H. Misawa, Glass cutting by femtosecond pulsed irradiation”. J. Microlith. Microfab. Microsyst. 3(2), 358–363 (2004)

    Google Scholar 

  38. J. Maksimovic, S.-H. Ng, T. Katkus, N.H. An Le, J.W.M. Chon, B.C.C. Cowie, T. Yang, Y. Bellouard, S. Juodkazis, Ablation in externally applied electric and magnetic fields. Nanomaterials 10(2), 182 (2020). https://doi.org/10.3390/nano10020182

    Article  Google Scholar 

  39. J. Maksimovic, S.H. Ng, T. Katkus, B.C. Cowie, S. Juodkazis, External field-controlled ablation: magnetic field. Nanomaterials 9(12), 1662 (2019). https://doi.org/10.3390/nano9121662

    Article  Google Scholar 

  40. J.-G. Hua, H. Ren, A. Jia, Z.-N. Tian, L. Wang, S. Juodkazis, Q.-D. Chen, H.-B. Sun, Convex silica microlens arrays via femtosecond laser writing. Opt. Lett. 45(3), 636–639 (2020). https://doi.org/10.1364/ol.378606

    Article  ADS  Google Scholar 

  41. J.-G. Hua, Z.-N. Tian, S.-J. Xu, S. Lundgaard, S. Juodkazis, Fast fabrication of optical vortex generators by femtosecond laser ablation. Appl. Surf. Sci. 475, 660–665 (2019). https://doi.org/10.1016/j.apsusc.2018.12.249

    Article  ADS  Google Scholar 

  42. K. Bundy, et al., FOBOS: a next-generation spectroscopic facility at the WM Keck observatory (2019). arXiv:1907.07195. Accessed 16 Jul 2019

  43. P. Caramazza, O. Moran, R. Murray-Smith, D. Faccio, Transmission of natural scene images through a multimode fibre. Nat. Commun. 10, 2029 (2019). https://doi.org/10.1038/s41467-019-10057-8

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Workshop of Photonics, Ltd. for femtosecond laser fabrication system acquired via technology transfer project. We acknowledge funding for the Nanolab by Swinburne University of Technology (SUT). DS is grateful for support via Honors and MH via PhD programs at SUT.

Funding

ARC LP190100505 is acknowledged for funding.

Author information

Authors and Affiliations

Authors

Contributions

Light matter interaction and dynamics conceptualization—SJ; fabrication—DS, SHN, MH and TK; characterisation—MH, DS, SHN, VA and TK KOH etching—SHN, VA and DS; simulation—VA and DS; optical testing—VA, SHN and DS; manuscript writing—VA and SJ; review, editing and proof reading—all the authors; project guidance—KG, SJ; resources—SJ; funding—SJ.

Corresponding author

Correspondence to Vijayakumar Anand.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, D., Ng, S.H., Han, M. et al. Imaging with diffractive axicons rapidly milled on sapphire by femtosecond laser ablation. Appl. Phys. B 127, 154 (2021). https://doi.org/10.1007/s00340-021-07701-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07701-x

Navigation