Skip to main content

Advertisement

Log in

Cluster-based filtering framework for removing speckles with structural protection in OCT images

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Generally speaking, it is the essential core of image filtering to keep the texture features better while denoising the image. To some extent, optical coherence tomography retina images have speckle noise, which masks the texture features of the image, and thus causes misjudgment to the doctor’s diagnosis. In this paper, we first propose a cluster-based filtering framework for removing speckles with structural protection in OCT images. The overall process can be divided into preprocessing, structure extraction and structure denoising. First, in the preprocessing stage, we propose to use the shearlet (SHT) method for preliminary filtering and combine block search and matching to achieve structure protection. Then in the structure extraction stage, we propose to use the relative total variation algorithm to achieve structure extraction, combined with fuzzy C-means Clustering filters out the background noise to obtain the structure mask of the image. Finally, in the structure denoising stage, we propose a new variational Block matching 3D (BM3D)-L2 method, and the structure of the image and the noise are described in BM3D space and L2 space, respectively. By assigning appropriate values to the parameters, image noise can be better eliminated, and the structural texture of the image can be protected. We test the proposed method on seven large noisy OCT images, which include five human retinal OCT images and two mouse optic nerve OCT images. In addition, we also compare it with SHT, BM3D, TV-SHT and TV-BM3D methods, which were proved to be effective in denoising. The performances of these methods are quantitatively evaluated in terms of the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and the averaged equivalent number of looks (ENL) at the aspects of speckle reduction and structure texture protection. Vast experiments show that our proposed method can effectively reduce speckle noise in OCT images, protect important structural information and improve image quality. Here, we believe that our method will improve image segmentation, medical diagnosis, and can use this as training samples to improve the accuracy of machine learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. Huang, E.A. Swanson, C.P. Lin et al., Science 254, 1178–1181 (1991)

    Article  ADS  Google Scholar 

  2. W. Drexler, U. Morgner, R.K. Ghanta et al., Nat. Med. 7, 502–507 (2001)

    Article  Google Scholar 

  3. F. Fercher, W. Drexler, C.K. Hitzenberger et al., Rep. Prog. Phys. 66, 239–303 (2003)

    Article  ADS  Google Scholar 

  4. J.M. Schmitt, S.H. Xiang, K.M. Yung, J. Biomed. Opt. 4, 95–105 (1999)

    Article  ADS  Google Scholar 

  5. M. Wojtkowski, Appl. Opt. 49, D30–D61 (2010)

    Article  Google Scholar 

  6. Y. Matsuo, T. Sakamoto, T. Yamashita et al., Investig. Ophthalmol. Vis. Sci. 54, 7630–7636 (2013)

    Article  Google Scholar 

  7. M. Wojtkowski, R. Leitgeb, A. Kowalczyk et al., J. Biomed. Opt. 7, 457–463 (2002)

    Article  ADS  Google Scholar 

  8. M. Gora, K. Karnowski, M. Szkulmowski et al., Opt. Express 17, 14880–14894 (2009)

    Article  ADS  Google Scholar 

  9. M. Hughes, M. Spring, A. Podoleanu, Appl. Opt. 49, 99–107 (2010)

    Article  ADS  Google Scholar 

  10. M. Szkulmowski, I. Gorczynska, D. Szlag et al., Opt. Express 20, 1337–1359 (2012)

    Article  ADS  Google Scholar 

  11. T. Loupas, W. Mcdicken, P. Allen, IEEE Trans. Circuits Syst. 36, 129–135 (1989)

    Article  Google Scholar 

  12. J.S. Lee, Comput. Graph. Image Process. 17, 24–32 (1981)

    Article  ADS  Google Scholar 

  13. G. Franceschetti, V. Pascazio, G. Schirinzi, J. Opt. Soc. Am. A 12, 686–694 (1995)

    Article  ADS  Google Scholar 

  14. A. Wong, A. Mishra, K. Bizheva et al., Opt. Express 18, 8338–8352 (2010)

    Article  ADS  Google Scholar 

  15. Y. Yu, S.T. Acton, IEEE Trans. Image Process. 11, 1260–1270 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  16. H.M. Salinas, D.C. Fernández, IEEE Trans. Med. Imaging 26, 761–771 (2007)

    Article  Google Scholar 

  17. R. Bernardes, C. Maduro, P. Serranho et al., Opt. Express 18, 24048–24059 (2010)

    Article  ADS  Google Scholar 

  18. J. Aum, J.H. Kim, J. Jeong, Appl. Opt. 54, D43–D50 (2015)

    Article  Google Scholar 

  19. H. Yu, J. Gao, A. Li, Opt. Lett. 41, 994–997 (2016)

    Article  ADS  Google Scholar 

  20. H. Chen, S. Fu, H. Wang et al., J. Biomed. Opt. 23, 036014 (2018)

    ADS  Google Scholar 

  21. H. Lv, S. Fu, C. Zhang et al., Opt. Express 26, 11804 (2018)

    Article  ADS  Google Scholar 

  22. L. Rudin, S. Osher, E. Fatemi, Phys. D. 60, 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  23. D.L. Donoho, M. Johnstone, J. Am. Stat. Assoc. 90, 1200–1224 (1995)

    Article  Google Scholar 

  24. D.L. Marks, T.S. Ralston, S.A. Boppart, J. Opt. Soc. Am. A 22, 2365–2371 (2005)

    Article  ADS  Google Scholar 

  25. G. Aubert, P. Kornprobst, Springer Science & Business Media (2006)

  26. G. Gong, H. Zhang, M. Yao, Opt. Express 23, 24699–24712 (2015)

    Article  ADS  Google Scholar 

  27. J.X. Deng, Y.M. Liang, Acta Photonica Sin. 29, 2138–2141 (2009)

    Google Scholar 

  28. D.C. Adler, T.H. Ko, J.G. Fujimoto, Opt. Lett. 29, 2878–2880 (2004)

    Article  ADS  Google Scholar 

  29. D. Gupta, R.S. Anand, B. Tyagi, IET Image Process. 9, 107–117 (2015)

    Article  Google Scholar 

  30. Q. Guo, F. Dong, S. Sun et al., IET Image Process. 7, 442–450 (2013)

    Article  Google Scholar 

  31. Z. Jian, Z. Yu, L. Yu et al., Opt. Lett. 34, 1516–1518 (2009)

    Article  ADS  Google Scholar 

  32. K. Dabov, A. Foi, V. Katkovnik et al., IEEE Trans. Image Process. 16, 2080–2095 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  33. J. Ma, G. Plonka, IEEE Trans. Image Process 16, 2198–2206 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  34. T. Zeng, X. Li, M. Ng, Commun. Comput. Phys. 8, 976 (2010)

    Article  MathSciNet  Google Scholar 

  35. M. Xu, C. Tang, M. Chen et al., Opt. Laser. Eng. 122, 265–283 (2019)

    Article  Google Scholar 

  36. S. Huang, C. Tang, M. Xu et al., Appl. Opt. 58, 6233–6243 (2019)

    Article  ADS  Google Scholar 

  37. S. Adabi, E. Rashedi, A. Clayton et al., J. Biomed. Opt., 23, 016013 (2018)

  38. Y. Ma, X. Chen, W. Zhu et al., Biomed. Opt. Express 9, 5129–5146 (2018)

    Article  Google Scholar 

  39. K.J. Halupka, B.J. Antony, M.H. Lee et al., Biomed. Opt. Express 9, 6205–6221 (2018)

    Article  Google Scholar 

  40. Y. Chen, J. Li, R. Nian et al., in OCEANS 2017 - Anchorage, pp. 1–6 (2017).

  41. K.S. Chuang, H.L. Tzeng, S. Chen et al., Comput. Med. Imaging Graph. 30(1), 9–15 (2006)

    Article  Google Scholar 

  42. J.F. Aujol, A. Chambolle, Int. J. Comput. Vis. 63, 85–104 (2005)

    Article  Google Scholar 

  43. D.S. Kermany, M. Goldbaum, W. Cai et al., Cell 172(5), 1122–1131 (2018)

    Article  Google Scholar 

  44. Hu. Yibing, C. Tang, Xu. Min et al., Appl. Opt. 58, 9861–9869 (2019)

    Article  ADS  Google Scholar 

  45. M. Hossein Eybposh, Z. Turani, D. Mehregan et al., Biomed. Opt. Express 9, 6359–6373 (2018)

    Article  Google Scholar 

  46. L. Fang, IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NNSFC) (Grant nos. 11772081, 11972106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Tang, C., Xu, M. et al. Cluster-based filtering framework for removing speckles with structural protection in OCT images. Appl. Phys. B 127, 149 (2021). https://doi.org/10.1007/s00340-021-07682-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07682-x

Navigation