Skip to main content
Log in

High-efficiency CW and passively Q-switched operation of a 2050 nm L-shaped Tm3+:Y2O3 ceramic laser in-band fiber-laser pumped at 1670 nm

  • Rapid Communication
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A Tm3+:Y2O3 ceramic laser with the L-shaped cavity in-band pumped by a fiber laser at 1670 nm was studied in the CW and passively Q-switched regimes. The CW laser was tunable in the range between 2046 and 2054 nm. The output power reached up to 4.9 W and the average slope efficiency was 75% in the high-quality single-transverse-mode beam The highest CW output power in the multi-transverse-mode beam was 12 W. A Cr2+:ZnSe saturable absorber was used to achieve the Q-switched operation at 2051 nm with the average power of up to 1.3 W in the single transverse mode, at the pulse repetition rate of 2–10 kHz and the pulse width of 80–150 ns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Availability of data and materials

All material in the paper is suitable for the open access.

References

  1. K. Scholle, S. Lamrini, P. Koopmann, P. Fuhrberg, Frontiers in Guided Wave Optics and Optoelectronics (Croatia, InTech, 2010).

    Google Scholar 

  2. C.H. Krankel, IEEE J. Sel. Top. Quant. Electron. 21, 1602013–1602113 (2015)

    Article  Google Scholar 

  3. D. Creeden, J.C. McCarthy, P.A. Ketteridge, T. Southward, P.G. Schunemann, J.J. Komiak, W. Dove, E.P. Chicklis, IEEE J. Sel. Top. Quant. Electron. 13, 732–736 (2007)

    Article  ADS  Google Scholar 

  4. H. Huang, S. Wang, H. Chen, O.L. Antipov, S.S. Balabanov, D. Shen, Opt. Express 27, 38593–38601 (2019)

    Article  ADS  Google Scholar 

  5. O.L. Antipov, A.A. Novikov, N.G. Zakharov, A.P. Zinoviev, Opt. Mater. Express 2, 183–189 (2012)

    Article  ADS  Google Scholar 

  6. P.A. Ryabochkina, A.N. Chabushkin, Yu.L. Kopylov, V.V. Balashov, K.V. Lopukhin, Quant. Electron. 46, 597–600 (2016)

    Article  ADS  Google Scholar 

  7. W. Jing, P. Loiko, J.M. Serres, Y. Wang, E. Vileishnikova, M. Aguilo, F. Diaz, U. Grebner, H. Huang, V. Petrov, X. Mateos, Opt. Mat. Express 7, 4192–4202 (2017)

    Article  ADS  Google Scholar 

  8. Z. Zhou, X. Guan, X. Huang, B. Xu, H. Xu, Zh. Caj, X. Xu, P. Liu, D. Li, J. Zhang, J. Xu, Opt. Lett. 42, 3781–3784 (2017)

    Article  ADS  Google Scholar 

  9. O. L. Antipov, Yu. A. Getmanovskiy, S. S. Balabanov, S. V. Larin, V. V. Sharkov, Laser Phys. Lett. 18, 055001 (2021)

  10. A.A. Lagatsky, O.L. Antipov, W. Sibbett, Opt. Express 20, 19349–19354 (2012)

    Article  ADS  Google Scholar 

  11. H. Wang, H. Huang, P. Liu, L. Jin, D. Shen, J. Zhang, D. Tang, Opt. Mater. Express 7(2), 296–303 (2017)

    Article  ADS  Google Scholar 

  12. H. Huang, H. Wang, D. Shen, Opt. Mater. Express 7, 3147–3154 (2017)

    Article  ADS  Google Scholar 

  13. F. Cornacchia, A. Di Lieto, P. Maroni, P. Minguzzi, A. Toncelli, M. Tonelli, E. Sorokin, I. Sorokina, Appl. Phys. B. 73, 191–194 (2001)

    Article  ADS  Google Scholar 

  14. Yu.L. Kalachev, V.A. Mihailov, V.V. Podreshetnikov, I.A. Shcherbakov, Opt. Commun. 284, 3357–3360 (2011)

    Article  ADS  Google Scholar 

  15. Y. Wang, D. Shen, H. Chen, J. Zhang, X. Qin, D. Tang, X. Yang, T. Zhao, Opt. Lett. 36, 4485–4487 (2011)

    Article  ADS  Google Scholar 

  16. S. Larin, O. Antipov, V. Sypin, O. Vershinin, Opt. Lett. 39, 3216–3218 (2014)

    Article  ADS  Google Scholar 

  17. M. Tokurakawa, Y. Mashiko, C. Kränkel, in Technical Digest of European Conference on Lasers and Electro-Optics (CLEO-Europe 2015), paper CA_12_1 (2015).

  18. O. Antipov, A. Novikov, S. Larin, I. Obronov, Opt. Lett. 41, 2298–2301 (2016)

    Article  ADS  Google Scholar 

  19. F. Wu, W. Yao, H. Xia, Q. Liu, M. Ding, Y. Zhao, W. Zhou, X. Xu, D. Shen, Opt. Mater. Express 7, 1289–1294 (2017)

    Article  ADS  Google Scholar 

  20. Q. Yi, T. Tsuboi, Sh. Zhou, Y. Nakai, H. Lin, H. Teng, Chines Opt. Lett. 10, 091602 (2012)

    Article  ADS  Google Scholar 

  21. K. Ning, J. Wang, J. Ma, Zh. Dong, L.B. Kong, D. Tang, Mater. Today Commun. 24, 101185 (2020)

    Article  Google Scholar 

  22. ISO 11146–1:2005 Lasers and laser-related equipment—Test methods for laser beam widths, divergence angles and beam propagation ratios—Part 1: Stigmatic and simple astigmatic beams.

  23. T. Taira, W.M. Tulloch, R.L. Byer, Appl. Optics 36(9), 1867–1874 (1997)

    Article  ADS  Google Scholar 

  24. A. Brenier, J. Rubin, R. Moncorge, C. Pedrini, J. de Phys. 50, 1463–1482 (1989)

    Article  Google Scholar 

  25. M. Eichhorn, Appl. Phys. B 93, 269–316 (2008)

    Article  ADS  Google Scholar 

  26. B.M. Walsh, Laser Phys. 19, 855–866 (2009)

    Article  ADS  Google Scholar 

  27. H. Kalaycioglu, A. Sennaroglu, IEEE J. Sel. Top. Quant. Electron. 11, 573–667 (2005)

    Article  Google Scholar 

Download references

Funding

This research was supported by the Russian Foundation for Basic Research (Grant № 19-32-50094/19) and the Ministry of Science and Higher Education of the Russian Federation, state assignment for the Institute of Applied Physics RAS (project № 0035-2019-0012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. L. Antipov.

Ethics declarations

Conflict of interest

Authors of the present paper have no conflicts of interest with other scientists in the same research field.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antipov, O.L., Getmanovskiy, Y.A., Dobrynin, A.A. et al. High-efficiency CW and passively Q-switched operation of a 2050 nm L-shaped Tm3+:Y2O3 ceramic laser in-band fiber-laser pumped at 1670 nm. Appl. Phys. B 127, 77 (2021). https://doi.org/10.1007/s00340-021-07627-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07627-4

Navigation