Skip to main content
Log in

A novel design of all-optical high speed and ultra-compact photonic crystal AND logic gate based on the Kerr effect

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this study, we have designed and simulated a photonic crystal (PhC) nonlinear AND logic gate. First, a suitable photonic crystal ring resonator (PhCRR) structure is designed and simulated that can be used for obtaining the switching power intensity after applying the nonlinear Kerr effect. In this structure, GaAs dielectric rods have been used in the air. The plane wave expansion (PWE) method is used to obtain the guided modes in the proposed structure and the two-dimensional finite-difference time-domain (2D-FDTD) method is also employed to simulate the structure. According to the results obtained from the numerical calculations, the minimum switching power intensity for the structure is equal to 800 W/μm2. Using the designed PhCRR and the obtained switching power intensity, an optimal compact photonic crystal AND logic gate based on the Kerr effect is designed and simulated which exhibits a good performance. The minimum contrast ratio, the response time, and the total area of the structure are 11.04 dB, 1.8 ps, and 194.56 μm2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Liu, Y. Ke, H. Luo, S. Wen, Photonic spin Hall effect in metasurfaces: a brief review. Nanophotonics 6(1), 51–70 (2017)

    Article  Google Scholar 

  2. Y. Lee, S.-J. Kim, H. Park, B. Lee, Metamaterials and metasurfaces for sensor applications. Sensors 17(8), 1726 (2017)

    Article  ADS  Google Scholar 

  3. H. Mohsenirad, S. Olyaee, M. Seifouri, Design of a new two-dimensional optical biosensor using photonic crystal waveguides and a nanocavity. Photon. Lasers Med. 5(1), 51–56 (2016)

    Article  Google Scholar 

  4. F. Ding, Y. Yang, R.A. Deshpande, S.I. Bozhevolnyi, A review of gap-surface plasmon metasurfaces: fundamentals and applications. Nanophotonics 7(6), 1129–1156 (2018)

    Article  Google Scholar 

  5. Z. Wu, Y. Zheng, Moiré metamaterials and metasurfaces. Adv. Opt. Mater. 6(3), 1701057 (2018)

    Article  MathSciNet  Google Scholar 

  6. L. Wang, Y. Zhang, X. Guo, T. Chen, H. Liang, X. Hao et al., A review of THz modulators with dynamic tunable metasurfaces. Nanomaterials 9(7), 965 (2019)

    Article  Google Scholar 

  7. B. Sain, C. Meier, T. Zentgraf, Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review. Adv. Photon. 1(2), (2019)

    Article  ADS  Google Scholar 

  8. T. Sadeghi, S. Golmohammadi, A. Farmani, H. Baghban, Improving the performance of nanostructure multifunctional graphene plasmonic logic gates utilizing coupled-mode theory. Appl. Phys. B 125(10), 1–12 (2019)

    Article  Google Scholar 

  9. N. Gao, D. Luo, B. Cheng, H. Hou, Teaching-learning-based optimization of a composite metastructure in the 0–10 kHz broadband sound absorption range. J. Acoust. Soc. Am. 148(2), EL125–EL129 (2020)

    Article  ADS  Google Scholar 

  10. B. Fang, Y. Ke, L. Jiang, J. Cai, H. Gan, M. Zhang et al., Continuous scattering angle control of transmission terahertz wave by convolution manipulation of all-dielectric encoding metasurfaces. Appl. Phys. A 126(8), 1–14 (2020)

    Article  Google Scholar 

  11. N. Gao, K. Lu, An underwater metamaterial for broadband acoustic absorption at low frequency. Appl. Acoust. 169, 107500 (2020)

    Article  Google Scholar 

  12. Y. Zhou, Z. Shen, J. Wu, Y. Zhang, S. Huang, H. Yang, Design of ultra-wideband and near-unity absorption water-based metamaterial absorber. Appl. Phys. B 126(3), 1–5 (2020)

    Article  ADS  Google Scholar 

  13. X. Chen, D. Wang, T. Wang, Z. Yang, X. Zou, P. Wang et al., Enhanced photoresponsivity of a GaAs nanowire metal-semiconductor-metal photodetector by adjusting the fermi level. ACS Appl. Mater. Interfaces. 11(36), 33188–33193 (2019)

    Article  Google Scholar 

  14. X. Zhu, F. Lin, Z. Zhang, X. Chen, H. Huang, D. Wang et al., Enhancing performance of a GaAs/AlGaAs/GaAs nanowire photodetector based on the two-dimensional electron-hole tube structure. Nano Lett. 20(4), 2654–2659 (2020)

    Article  ADS  Google Scholar 

  15. A. Foroughifar, H. Saghaei, E. Veisi, Design and analysis of a novel four-channel optical filter using ring resonators and line defects in photonic crystal microstructure. Opt. Quant. Electron. 53(2), 1–12 (2021)

    Article  Google Scholar 

  16. M. Moradi, M. Mohammadi, S. Olyaee, M. Seifouri, Design and simulation of a fast all-optical modulator based on photonic crystal using ring resonators. Silicon 13(1), 1–7 (2021)

    Google Scholar 

  17. N. Gao, L. Tang, J. Deng, K. Lu, H. Hou, K. Chen, Design, fabrication and sound absorption test of composite porous metamaterial with embedding I-plates into porous polyurethane sponge. Appl. Acoust. 175, 107845 (2021)

    Article  Google Scholar 

  18. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58(20), 2059–2064 (1987)

    Article  ADS  Google Scholar 

  19. S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58(23), 2486–2490 (1987)

    Article  ADS  Google Scholar 

  20. E. Yablonovitch, T. Gmitter, K.-M. Leung, Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 67(17), 2295–2299 (1991)

    Article  ADS  Google Scholar 

  21. C. Sibilia, T.M. Benson, M. Marciniak, T. Szoplik, Photonic Crystals: Physics and Technology (Springer, Berlin, 2008)

    Book  Google Scholar 

  22. I.A. Sukhoivanov, I.V. Guryev, Photonic Crystals: Physics and Practical Modeling (Springer, Berlin, 2009)

    Book  Google Scholar 

  23. D. Liu, Y. Gao, A. Tong, S. Hu, Absolute photonic band gap in 2D honeycomb annular photonic crystals. Phys. Lett. A 379(3), 214–217 (2015)

    Article  ADS  Google Scholar 

  24. T.A. Moniem, All optical active high decoder using integrated 2D square lattice photonic crystals. J. Mod. Opt. 62(19), 1643–1649 (2015)

    Article  ADS  Google Scholar 

  25. T. Baba, Slow light in photonic crystals. Nat. Photon. 2(8), 465–473 (2008)

    Article  ADS  Google Scholar 

  26. S.C. Xavier, B.E. Carolin, A.P. Kabilan, W. Johnson, Compact photonic crystal integrated circuit for all-optical logic operation. IET Optoelectron. 10(4), 142–147 (2016)

    Article  Google Scholar 

  27. R.M. Younis, N.F. Areed, S.S. Obayya, Fully integrated AND and OR optical logic gates. IEEE Photon. Technol. Lett. 26(19), 1900–1903 (2014)

    Article  ADS  Google Scholar 

  28. N.M. D’souza, V. Mathew, Interference based square lattice photonic crystal logic gates working with different wavelengths. Opt. Laser Technol. 80, 214–219 (2016)

    Article  ADS  Google Scholar 

  29. A. Mohebzadeh-Bahabady, S. Olyaee, All-optical NOT and XOR logic gates using photonic crystal nano-resonator and based on an interference effect. IET Optoelectron. 12(4), 191–195 (2018)

    Article  Google Scholar 

  30. E.H. Shaik, N. Rangaswamy, Realization of XNOR logic function with all-optical high contrast XOR and NOT gates. Opto-Electron. Rev. 26(1), 63–72 (2018)

    Article  ADS  Google Scholar 

  31. S.E. Kordi, R. Yousefi, S.S. Ghoreishi, H. Adrang, All-optical OR, NOT and XOR gates based on linear photonic crystal with high port-to-port isolation. Appl. Phys. B 126, 1–9 (2020). AN 169

    Article  Google Scholar 

  32. M. Pirzadi, A. Mir, D. Bodaghi, Realization of ultra-accurate and compact all-optical photonic crystal OR logic gate. IEEE Photon. Technol. Lett. 28(21), 2387–2390 (2016)

    Article  ADS  Google Scholar 

  33. F. Parandin, M.R. Malmir, M. Naseri, A. Zahedi, Reconfigurable all-optical NOT, XOR, and NOR logic gates based on two dimensional photonic crystals. Superlattices Microstruct. 113, 737–744 (2018)

    Article  ADS  Google Scholar 

  34. K.E. Muthu, V.J.U. Firthouse, S.S. Deepa, A.S. Raja, S. Robinson, Design and analysis of 3-input NAND/NOR/XNOR gate based on 2D photonic crystals. J. Opt. Commun., 1 Issue ahead-of-print (2019)

  35. Z.F. Chaykandi, A. Bahrami, S. Mohammadnejad, Ultra-compact all-optical phase-controlled NAND, OR, XOR, XNOR, and NOT multi-function logic gate. Opt. Quant. Electron. 50(7), 1–8 (2018)

    Google Scholar 

  36. L. He, H. Ji, Y. Wang, X. Zhang, Topologically protected beam splitters and logic gates based on two-dimensional silicon photonic crystal slabs. Opt. Express 28(23), 34015–34023 (2020)

    Article  ADS  Google Scholar 

  37. A. Mohebzadeh-Bahabady, S. Olyaee, Designing low power and high contrast ratio all-optical NOT logic gate for using in optical integrated circuits. Opt. Quant. Electron. 51(1), 1–13 (2019)

    Article  Google Scholar 

  38. L.M. Redha, B. Touraya, B. Mohamed, All-optical NOT/OR/XOR logic gates based on photonic crystal with low response time and high contrast ratio, in IEEE 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP), pp. 50–55 (2020)

  39. M. Moradi, M. Danaie, A.A. Orouji, Design of all-optical XOR and XNOR logic gates based on Fano resonance in plasmonic ring resonators. Opt. Quant. Electron. 51(5), 1–18 (2019)

    Article  Google Scholar 

  40. E. Anagha, R. Jeyachitra, An investigation on the cascaded operation of photonic crystal based all optical logic gates and verification of De Morgan’s law. Opt. Quant. Electron. 52, 1–26 (2020)

    Article  Google Scholar 

  41. A. Mohebzadeh-Bahabady, S. Olyaee, Investigation of response time of small footprint photonic crystal AND logic gate. Optoelectron. Lett. 16(6), 477–480 (2020)

    Article  ADS  Google Scholar 

  42. S. Olyaee, M. Seifouri, A. Mohebzadeh-Bahabady, M. Sardari, Realization of all-optical NOT and XOR logic gates based on interference effect with high contrast ratio and ultra-compacted size. Opt. Quant. Electron. 50(11), 1–12 (2018)

    Article  Google Scholar 

  43. K.E. Muthu, S. Selvendran, V. Keerthana, K. Murugalakshmi, A.S. Raja, Design and analysis of a reconfigurable XOR/OR logic gate using 2D photonic crystals with low latency. Opt. Quant. Electron. 52(10), 1–9 (2020)

    Article  Google Scholar 

  44. S.E. Kordi, R. Yousefi, S.S. Ghoreishi, H. Adrang, All-optical OR, NOT and XOR gates based on linear photonic crystal with high port-to-port isolation. Appl. Phys. B 126(10), 1–9 (2020)

    Article  Google Scholar 

  45. R.S. Quimby, Photonics and Lasers (Wiley, New York, 2006)

    Book  Google Scholar 

  46. H.M. Hussein, T.A. Ali, N.H. Rafat, A review on the techniques for building all-optical photonic crystal logic gates. Opt. Laser Technol. 106, 385–397 (2018)

    Article  ADS  Google Scholar 

  47. A. Salmanpour, S. Mohammadnejad, P.T. Omran, All-optical photonic crystal NOT and OR logic gates using nonlinear Kerr effect and ring resonators. Opt. Quant. Electron. 47(12), 3689–3703 (2015)

    Article  MATH  Google Scholar 

  48. S. Serajmohammadi, H. Absalan, All optical NAND gate based on nonlinear photonic crystal ring resonator. Inf. Process. Agric. 3(2), 119–123 (2016)

    Google Scholar 

  49. A. Pashamehr, M. Zavvari, H. Alipour-Banaei, All-optical AND/OR/NOT logic gates based on photonic crystal ring resonators. Front. Optoelectron. 9(4), 578–584 (2016)

    Article  Google Scholar 

  50. F. Mehdizadeh, M. Soroosh, Designing of all optical NOR gate based on photonic crystal. IJPAP 54(01), 35–39 (2016)

    Google Scholar 

  51. P. Andalib, N. Granpayeh, All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. JOSA B 26(1), 10–16 (2009)

    Article  ADS  Google Scholar 

  52. S. Afzal, V. Ahmadi, M. Ebnali-Heidari, All-optical tunable photonic crystal NOR gate based on the nonlinear Kerr effect in a silicon nanocavity. JOSA B 30(9), 2535–2539 (2013)

    Article  ADS  Google Scholar 

  53. A. Salmanpour, S. Mohammadnejad, A. Bahrami, All-optical photonic crystal AND, XOR, and OR logic gates using nonlinear Kerr effect and ring resonators. J. Mod. Opt. 62(9), 693–700 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. A. Rahmani, M. Asghari, An ultra-compact and high speed all optical OR/NOR gate based on nonlinear PhCRR. Optik 138, 314–319 (2017)

    Article  ADS  Google Scholar 

  55. S. Rebhi, M. Najjar, A new design of a photonic crystal ring resonator based on Kerr effect for all-optical logic gates. Opt. Quant. Electron. 50(10), 1–17 (2018)

    Article  Google Scholar 

  56. A. Farmani, A. Mir, M. Irannejad, 2D-FDTD simulation of ultra-compact multifunctional logic gates with nonlinear photonic crystal. JOSA B 36(4), 811–818 (2019)

    Article  ADS  Google Scholar 

  57. A. Kumar, S. Medhekar, All optical NOR and NAND gates using four circular cavities created in 2D nonlinear photonic crystal. Opt. Laser Technol. 123, 105910 (2020)

    Article  Google Scholar 

  58. S. Naghizade, H. Saghaei, A novel design of all-optical full-adder using nonlinear X-shaped photonic crystal resonators. Opt. Quant. Electron. 53(3), 1–13 (2021)

    Google Scholar 

  59. S. Olyaee, A. Mohebzadeh-Bahabady, Design of an all-optical AND logic gate based on photonic crystal with small dimensions suitable for integrated optical circuits. Sci. J. Appl. Electromagn. 6(2), 53–59 (2018)

    Google Scholar 

  60. C.J. Wu, C.P. Liu, Z. Ouyang, Compact and low-power optical logic NOT gate based on photonic crystal waveguides without optical amplifiers and nonlinear materials. Appl. Opt. 51(5), 680–685 (2012)

    Article  ADS  Google Scholar 

  61. J.H. Greene, A. Taflove, General vector auxiliary differential equation finite-difference time-domain method for nonlinear optics. Opt. Express 14(18), 8305–8310 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Olyaee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veisi, E., Seifouri, M. & Olyaee, S. A novel design of all-optical high speed and ultra-compact photonic crystal AND logic gate based on the Kerr effect. Appl. Phys. B 127, 70 (2021). https://doi.org/10.1007/s00340-021-07618-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07618-5

Navigation