Skip to main content
Log in

Investigation of the net gain behavior in Er:Ti:LiNbO3 waveguide amplifier by an erbium-doped As2S3 and undoped As2S3 overlay

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this work the fabrication and characterization of As2S3 and erbium-doped As2S3 layers on Er:Ti:LiNbO3 channel waveguide amplifiers are reported and compared with Er:Ti:LiNbO3 channel amplifier for the first time to the author’s knowledge. We have first characterized a typical Er:Ti:LiNbO3 waveguide amplifier of 2.6 cm length and measured a small signal net gain of 2.5 dB for TM mode under 1470 nm pumping. Further optical characterization of Er:Ti:LiNbO3 case was also performed for two wavelengths of 1531 and 1550 nm in an Er:Ti:LiNbO3 case of 3.5 cm length. Signal enhancement of 22.234 and 6.463 dB was obtained for two wavelengths respectively and showed a stability behavior for an incident pump power of about 144 mW. As2S3 layer and erbium doped As2S3 waveguide layer were deposited by thermal and co-sputtering respectively on two Er:Ti:LiNbO3 channel waveguide amplifiers as hybrid waveguide amplifiers then absorption and amplification were characterized. Whilst net gain was not improved due to the presence of pump-induced up-converted green light and moisture diffused in overlay waveguides, this nonetheless represents a further step towards the realization of hybrid waveguide amplifiers with loss compensation in nonlinear photonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig. 3
Fig. 4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Fig.10
Fig.11
Fig.12
Fig.13

Similar content being viewed by others

References

  1. R. Brinkmann, I. Baumann, M. Dinand, W. Sohler, H. Suche, IEEE J. Quantum Electron. 30, 2356 (1994)

    Article  ADS  Google Scholar 

  2. I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, S. Westenhofer, IEEE J. Quantum Electron. 32, 1695 (1996)

    Article  ADS  Google Scholar 

  3. C.H. Huang, L. McCaughan, IEEE J. Sel. Top. Quantum Electron. 2, 367 (1996)

    Article  ADS  Google Scholar 

  4. C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, IEEE J. Sel. Top. Quantum Electron. 6, 101 (2000)

    Article  ADS  Google Scholar 

  5. M. Dinand, W. Sohler, IEEE J. Quantum Electron. 30, 1267 (1994)

    Article  ADS  Google Scholar 

  6. D.L. Zhang, F. Han, B. Chen, P.R. Hua, D.Y. Yu, E.Y.B. Pun, J. Lightwave Technol. 32, 135 (2014)

    Article  ADS  Google Scholar 

  7. E. Cantelar, R. Nevado, G. Lifante, F. Cussó, Opt. Quant. Electron. 32, 819 (2000)

    Article  Google Scholar 

  8. D.L. Zhang, C.X. Qiu, F. Han, B. Chen, P.R. Hua, D.Y. Yu, E.Y.B. Pun, IEEE Photonics Technol. Lett. 26, 524 (2014)

    Article  ADS  Google Scholar 

  9. V. Voinot, R. Ferriere, H. Porte, P. Mollier, Proc. SPIE 2788, 176 (1996)

    Article  ADS  Google Scholar 

  10. X. Song, W. Tan, W.T. Snider, X. Xia, C.K. Madsen, IEEE Photonics J. 3, 686 (2013)

    Article  ADS  Google Scholar 

  11. K. Ahmadi, A. Zakery, G.M. Parsanasab, Appl. Phys. B 125, 92 (2019)

    Article  ADS  Google Scholar 

  12. M.E. Solmaz, D.B. Adams, W.C. Tan, W.T. Snider, C.K. Madsen, Opt. Lett. 34, 1735 (2009)

    Article  ADS  Google Scholar 

  13. Y. Zhou, X. Xia, W.T. Snider, J.H. Kim, Q. Chen, W.C. Tan, C.K. Madsen, IEEE Photonics Technol. Lett. 23, 1195 (2011)

    Article  ADS  Google Scholar 

  14. B.J. Eggleton, B. Luther-Davies, K. Richardson, Nat. Photonics 5, 141 (2011)

    Article  ADS  Google Scholar 

  15. M.J. Collins, A.S. Clark, J. He, D.Y. Choi, R.J. Williams, A.C. Judge, S.J. Madden, M.J. Withford, M.J. Steel, B. Luther-Davies, C. Xiong, Opt. Lett. 37, 3393 (2012)

    Article  ADS  Google Scholar 

  16. J. Fick, E.J. Knystautas, A. Villeneuve, F. Schiettekatte, S. Roorda, K.A. Richardson, J. Non-Cryst. Solids 272, 200 (2000)

    Article  ADS  Google Scholar 

  17. K. Vu, K. Yan, Z. Jin, X. Gai, D.Y. Choi, S. Debbarma, B. Luther-Davies, S. Madden, Opt. Lett. 38, 1766 (2013)

    Article  ADS  Google Scholar 

  18. K. Yan, K. Vu, S. Madden, Opt. Lett. 40, 796 (2015)

    Article  ADS  Google Scholar 

  19. I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, L. Beckers, C. Buchal, M. Fleuster, H. Holzbrecher, H. Paulus, K.H. Müller, T. Gog, Appl. Phys. A 64, 33 (1996)

    Article  ADS  Google Scholar 

  20. R.P. Wang, S.J. Madden, C.J. Zha, A.V. Rodeand, B. Luther-Davies, J. Appl. Phys. 100, 063524 (2006)

    Article  ADS  Google Scholar 

  21. K. Vu, S. Madden, Opt. Express 18, 19192 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolnasser Zakery.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, K., Zakery, A. Investigation of the net gain behavior in Er:Ti:LiNbO3 waveguide amplifier by an erbium-doped As2S3 and undoped As2S3 overlay. Appl. Phys. B 127, 67 (2021). https://doi.org/10.1007/s00340-021-07617-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07617-6

Navigation