Skip to main content
Log in

Measurement of characteristic parameters and self-generated electric and magnetic fields (SGEMFs) of laser-induced aluminum plasma

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The characteristic parameters as well as self-generated electric and magnetic fields of Nd:YAG laser (532 nm, 10 ns) ablated Al plasma have been measured by employing Langmuir, electric and magnetic probes, respectively. Plasma parameters such as electron temperature (\({T}_{e}\)) and electron number density (\({n}_{e}\)) as well as SGEMFs of Al plasma are measured as a function of laser irradiance ranging from 5.2 to 9.4 GW/cm2 at fixed probes to target distance of 10 mm. Both \({T}_{e}\) and \({n}_{e}\) of Al plasma show an increasing trend with the increase of laser irradiance and vary from 8 to 11 eV and 3.9 × 1014 to 7.07 × 1014/cm3, respectively. The SGEMFs show an overall increasing trend with the increase of laser irradiance and a decreasing trend with increasing probe to plume distances. The evaluated values of SGEMFs vary from 50 to 380 V/m and 89 to 165 G. The growth of SGEMFs has been explained on the basis of quadrupole distribution of charges at leading and trailing fronts of expanding plasma. By controlling plasma parameters such as electron temperature and electron density, laser generated plasmas can be efficiently used as sources of pulsed electric and magnetic fields in wake field accelerators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y. Lu, M. Hong, J. Appl. Phys. 86, 2812 (1999)

    Article  ADS  Google Scholar 

  2. K. Krushelnick, E. Clark, R. Allott, F. Beg, C. Danson, A. Machacek, V. Malka, Z. Najmudin, D. Neely, P. Norreys, IEEE Trans. Plasma Sci. 28, 1110 (2000)

    Article  ADS  Google Scholar 

  3. L. Torrisi, M. Cutroneo, S. Cavallaro, IEEE Trans. Plasma Sci. 42, 799 (2014)

    Article  ADS  Google Scholar 

  4. L. Romagnani, M. Borghesi, C. Cecchetti, S. Kar, P. Antici, P. Audebert, S. Bandhoupadjay, F. Ceccherini, T. Cowan, J. Fuchs, Laser Part. Beams 26, 241 (2008)

    Article  ADS  Google Scholar 

  5. L. Torrisi, F. Caridi, D. Margarone, A. Borrielli, Appl. Surf. Sci. 254, 2090 (2008)

    Article  ADS  Google Scholar 

  6. S. Kumari, A. Kushwaha, A. Khare, J. Instrum. 7, C05017 (2012)

    Article  Google Scholar 

  7. S. Tudisco, D. Mascali, N. Gambino, A. Anzalone, S. Gammino, F. Musumeci, A. Scordino, A. Spitaleri, Nucl. Instrum. Methods Phys. Res. 653, 47 (2011)

    Article  ADS  Google Scholar 

  8. Y.V. Afanas’ev, A.P. Kanavin, Quantum Electron. 13, 1473 (1983)

    ADS  Google Scholar 

  9. R. Hua, H. Sio, S. Wilks, F. Beg, C. McGuffey, M. Bailly-Grandvaux, G. Collins, Y. Ping, Appl. Phys. Lett. 111, 034102 (2017)

    Article  ADS  Google Scholar 

  10. M.-E. Manuel, C. Li, F. Séguin, J. Frenje, D. Casey, R. Petrasso, S. Hu, R. Betti, J. Hager, D. Meyerhofer, Phys. Rev. Lett. 108, 255006 (2012)

    Article  ADS  Google Scholar 

  11. A. Kabashin, P. Nikitin, W. Marine, M. Sentis, Appl. Phys. Lett. 73, 25 (1998)

    Article  ADS  Google Scholar 

  12. V. Ageev, A. Barchukov, V. Konov, T. Murina, P. Nikitin, A. Prokhorov, A. Silenok, N. Chapliev, Zh. Eksp, Teor. Fiz. 76, 158 (1979)

    Google Scholar 

  13. J.A. Stamper, K. Papadopoulos, R.N. Sudan, S.O. Dean, E.A. McLean, J.M. Dawson, Phys. Rev. Lett. 26, 1012 (1971)

    Article  ADS  Google Scholar 

  14. D.F. Edwards, V. Korobkin, S. Motilyov, R. Serov, Phys. Rev. A 16, 2437 (1977)

    Article  ADS  Google Scholar 

  15. J.M. Paulin-Fuentes, C. Sánchez-Aké, F.O. Bredice, M. Villagrán-Muniz, J. Phys. D 48, 285204 (2015)

    Article  ADS  Google Scholar 

  16. V. Korobkin, R. Serov, JETP Lett. 4, 70 (1966)

    ADS  Google Scholar 

  17. A.V. Kabashin, P.I. Nikitin, W. Marine, M.L. Sentis, Quantum Electron. 28, 24 (1998)

    Article  ADS  Google Scholar 

  18. N.M. Bulgakova, A.V. Bulgakov, O.F. Bobrenok, Phys. Rev. E 62, 5624 (2000)

    Article  ADS  Google Scholar 

  19. M. Singh, K. Gopal, D.N. Gupta, Phys. Lett. A 380, 1437 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Drouet, R. Bolton, P. Kieffer, G. Saint-Hilaire, Z. Szili, H. Pepin, B. Grek, J. Appl. Phys. 48, 2525 (1977)

    Article  ADS  Google Scholar 

  21. W. Farmer, J. Koning, D. Strozzi, D. Hinkel, L. Berzak Hopkins, O. Jones, M. Rosen, Phys. Plasmas 24, 052703 (2017)

    Article  ADS  Google Scholar 

  22. Y.V. Afans’ev, A. Kanavin, J. Russ. Laser Res. 10, 477 (1989)

    Article  Google Scholar 

  23. N. Nakano, T. Sekiguchi, J. Phys. Soc. Jpn. 46, 960 (1979)

    Article  ADS  Google Scholar 

  24. D. Delle Side, E. Giuffreda, V. Nassisi, Nucl. Instrum. Methods Phys. Res. B 406, 185 (2017)

    Article  ADS  Google Scholar 

  25. R. Bird, L. McKee, F. Schwirzke, A. Cooper, Phys. Rev. A 7, 1328 (1973)

    Article  ADS  Google Scholar 

  26. D. Yousaf, S. Bashir, M. Akram, U.-i Kalsoom, N. Ali, Rad. Eff. Def. Sol. 169, 144 (2014)

    Article  Google Scholar 

  27. B. Yilbas, A. Arif, C. Karatas, K. Raza, J. Mater. Process. Technol. 209, 77 (2009)

    Article  Google Scholar 

  28. R. Solanki, W. Ritchie, G. Collins, Appl. Phys. Lett. 43, 454 (1983)

    Article  ADS  Google Scholar 

  29. V. Nassisi, D. Delle Side, L. Monteduro, E. Giuffreda, J. Instrum. 11, C05014 (2016)

    Article  Google Scholar 

  30. B. Doggett, J.G. Lunney, J. Appl. Phys. 105, 033306 (2009)

    Article  ADS  Google Scholar 

  31. M. Akram, S. Bashir, M.S. Rafique, A. Hayat, K. Mahmood, A. Dawood, M. Bashir, Appl. Phys. A 119, 859 (2015)

    Article  ADS  Google Scholar 

  32. J.D. Walker, Fundamentals of Physics Extended (Wiley, New York, 2010).

    Google Scholar 

  33. A. Thein, Y. Kitagawa, Y. Yamada, R. Takahashi, I. Tsuda, M. Yokoyama, Jpn. J. Appl. Phys. 17, 245 (1978)

    Article  ADS  Google Scholar 

  34. I.H. Hutchinson, Principles of Plasma Diagnostics (Plasma Phys. Control, Fusion, 2002).

    Book  Google Scholar 

  35. D.W. Koopman, Phys. Fluids 14, 1707 (1971)

    Article  ADS  Google Scholar 

  36. P. Nica, S. Gurlui, M. Osiac, M. Agop, M. Ziskind, C. Focsa, Phys. Plasmas 24, 103119 (2017)

    Article  ADS  Google Scholar 

  37. H. Thompson, J. Daiber, J. Appl. Phys. 48, 3307 (1977)

    Article  ADS  Google Scholar 

  38. C. Cecchetti, M. Borghesi, J. Fuchs, G. Schurtz, S. Kar, A. Macchi, L. Romagnani, P. Wilson, P. Antici, R. Jung, Phys. Plasmas 16, 043102 (2009)

    Article  ADS  Google Scholar 

  39. A. Barchukov, V. Konov, P. Nikitin, A. Prokhorov, Sov. Phys. - JETP 51, 482–486 (1980)

    ADS  Google Scholar 

  40. J.M.P. Fuentes, C. Sánchez-Aké, F.O. Bredice, M. Villagrán-Muniz, J. Phys. D: Appl. Phys. 46, 495202 (2013)

    Article  Google Scholar 

  41. E.G. Gamaly, A.V. Rode, B. Luther-Davies, V.T. Tikhonchuk, Phys. Plasmas 9, 949 (2002)

    Article  ADS  Google Scholar 

  42. C. Kittel, P. McEuen, P. McEuen, Introduction to Solid State Physics (Wiley, New York, 1996).

    Google Scholar 

  43. X. Shen, Y. Lu, A.T. Gebre, H. Ling, Y. Han, J. Appl. Phys. 100, 053303 (2006)

    Article  ADS  Google Scholar 

  44. A. Prokhoerov, V. Sidorinn, V. Chudnenko, JETP Lett. 26, 407–410 (1977)

    ADS  Google Scholar 

  45. S. Amin, S. Bashir, S. Anjum, M. Akram, A. Hayat, S. Waheed, H. Iftikhar, A. Dawood, K. Mahmood, Phys. Plasmas 24, 083112 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shazia Bashir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, F., Bashir, S., Akram, M. et al. Measurement of characteristic parameters and self-generated electric and magnetic fields (SGEMFs) of laser-induced aluminum plasma. Appl. Phys. B 127, 62 (2021). https://doi.org/10.1007/s00340-021-07609-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07609-6

Navigation