Skip to main content
Log in

A new model for explanation and generation of branched flow of light

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, a quasiparticle concept was proposed to understand the branched flow of light phenomenon. Combined with the geometrical optical theory, we successfully established a model to simulate the branched flow of light with this novel perspective. Our model owns an intuitive physics picture, without losing generality. Moreover, we demonstrated that a special structure with the fixed position and specific refractive value of quasiparticles can be designed, a controllable branched flow pattern of light will be correspondingly attained for future experimental guidance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.A. Topinka, B.J. LeRoy, R.M. Westervelt, S.E.J. Shaw, R. Fleischmann, E.J. Heller, K.D. Maranowski, A.C. Gossard, Coherent branched flow in a two-dimensional electron gas. Nature 410, 183–186 (2001)

    Article  ADS  Google Scholar 

  2. M.P. Jura, M.A. Topinka, L. Urban, A. Yazdani, H. Shtrikman, L.N. Pfeiffer, K.W. West, D. Goldhaber-Gordon, Unexpected features of branched flow through high-mobility two-dimensional electron gases. Nat. Phys. 3, 841–845 (2007)

    Article  Google Scholar 

  3. D. Maryenko, J.J. Metzger, F. Ospald, V. Umansky, R. Fleischmann, T. Geisel, K. von Klitzing, J.H. Smet, How branching can change the conductance of ballistic semiconductor devices. Phys. Rev. B 85, 195329 (2012)

    Article  ADS  Google Scholar 

  4. B. Liu, E.J. Heller, Stability of branched flow from a quantum point contact. Phys. Rev. Lett. 111, 236804 (2013)

    Article  ADS  Google Scholar 

  5. R. Höhmann, U. Kuhl, H.-J. Stöckmann, L. Kaplan, E.J. Heller, Freak waves in the linear regime: a microwave study. Phys. Rev. Lett. 104, 093901 (2010)

    Article  ADS  Google Scholar 

  6. S. Barkhofen, J.J. Metzger, R. Fleischmann, U. Kuhl, H.-J. Stöckmann, Experimental observation of a fundamental length scale of waves in random media. Phys. Rev. Lett. 111, 183902 (2013)

    Article  ADS  Google Scholar 

  7. M.A. Wolfson, S. Tomsovic, On the stability of long-range sound propagation through a structured ocean. J. Acoust. Soc. Am. 109, 2693–2703 (2001)

    Article  ADS  Google Scholar 

  8. L.H. Ying, Z. Zhuang, E.J. Heller, L. Kaplan, Linear and nonlinear rogue wave statistics in the presence of random currents. Nonlinearity 24, R67 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  9. O. Emile, J. Emile, Soap films as 1D waveguides. Nanofluid 1, 27 (2014)

    Google Scholar 

  10. A. Patsyk, U. Sivan, M. Segev, M.A. Bandres, Observation of branched flow of light. Nature 60, 583 (2020)

    Google Scholar 

  11. Patsyk, A., Bandres, M. A.; Segev, M. Interaction of light with thin liquid membranes. In Conference on Lasers and Electro-Optics FF3E2 (Optical Society of America, 2018); https://www.osapublishing.org/abstract.cfm?uri=CLEO_QELS-2019-FTu3D.1.

  12. T. Schwartz, G. Bartal, S. Fishman, M. Segev, Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007)

    Article  ADS  Google Scholar 

  13. H. Trompeter, W. Krolikowski, D.N. Neshev, A.S. Desyatnikov, A.A. Sukhorukov, Y.S. Kivshar, T. Pertsch, U. Peschel, F. Lederer, Bloch oscillations and zener tunneling in two-dimensional photonic lattices. Phys. Rev. Lett. 96, 053903 (2006)

    Article  ADS  Google Scholar 

  14. H.B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, Y. Silberberg, Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100, 170506 (2008)

    Article  ADS  Google Scholar 

  15. S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, V. Foglietti, Observation of dynamic localization in periodically curved waveguide arrays. Phys. Rev. Lett. 96, 243901 (2006)

    Article  ADS  Google Scholar 

  16. Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, M. Segev, Experimental observation of optical bound states in the continuum. Phys. Rev. Lett. 107, 183901 (2011)

    Article  ADS  Google Scholar 

  17. This concept is different with electron quasiparticle in solid state physics.

  18. The copy of figure permission will be authorized by Springer Nature.

  19. P.P. Mondal, A. Diaspro, “Ray Optics, Wave Optics and Imaging System Design” in Fundamentals of Fluorescence Microscopy (Springer, 2014).

    Book  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12004424 and 11847012). We thank Prof. Sidong Lei from Georgia State University and Prof. Wei Zhang in our department for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanfu Huang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C. A new model for explanation and generation of branched flow of light. Appl. Phys. B 127, 58 (2021). https://doi.org/10.1007/s00340-021-07608-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07608-7

Navigation