Skip to main content
Log in

Evaluation of machine learning methods for classification of rotational absorption spectra for gases in the 220–330 GHz range

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Machine learning (ML) methods are implemented to classify rotational absorption spectra for gas-phase compounds in the THz region, specifically 220–330 GHz where experimental data is available. Eight ML methods were trained in both standard and one-versus-rest (OVR) implementations using simulated absorption spectra for 12 volatile organic compounds and halogenated hydrocarbons of interest in industrial and environmental gas sensing applications. The performance of the resulting ML classifiers was compared against simulated training spectra in both a 70–30 training–testing split and in tenfold cross-validation studies, with the classifiers exhibiting accuracies in the range of 88–99% for simulated spectra. The classifiers were then tested for their ability to classify noisy experimental rotational spectra for methanol, ethanol, formic acid, acetaldehyde, acetonitrile, and chloromethane. The OVR implementations of the support vector machine (SVM) classifier with both linear and radial basis function kernels and the multi-layer perceptron (MLP) classifier achieved average classification accuracies of 87–94% for the experimental dataset. The study shows that THz spectra in the present frequency region provide a sufficient spectral fingerprint for ML classifiers to learn and predict speciation, allowing automated gas sensing. The present methods can be extrapolated to different frequency ranges and compounds and conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. R.H. Jacobsen, D.M. Mittleman, M.C. Nuss, Opt. Lett. 21, 2011 (1996)

    Article  ADS  Google Scholar 

  2. C.N. Banwell, E.M. McCash, Fundamentals of Molecular Spectroscopy, 4th edn. (McGraw-Hill Education, New York, 2016).

    Google Scholar 

  3. G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules, 1st edn. (D. Van Nostrand Company Inc., New York, 1945).

    Google Scholar 

  4. H.W. Kroto, Molecular Rotation Spectra, 1st edn. (Wiley, Hoboken, 1975).

    Google Scholar 

  5. C.H. Townes, A.L. Schawlow, Microwave Spectroscopy, 1st edn. (McGraw-Hill Book Company Inc., New York, 1955).

    Google Scholar 

  6. P. Bunker, P. Jensen, Molecular Symmetry and Spectroscopy, 2nd edn. (NRC Research Press, Ottawa, 1998).

    Google Scholar 

  7. T.E. Rice, M.A.Z. Chowdhury, M.W. Mansha, M.M. Hella, I. Wilke, M.A. Oehlschlaeger, Appl. Phys. B: Lasers Optics 126, 152 (2020)

    Article  ADS  Google Scholar 

  8. M. W. Mansha, K. Wu, T. E. Rice, M. A. Oehlschlaeger, M. M. Hella, and I. Wilke, Proceedings of IEEE Sensors 3 (2019).

  9. A. Tekawade, T. E. Rice, M. A. Oehlschlaeger, M. W. Mansha, K. Wu, M. M. Hella, and I. Wilke, in International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz (2019).

  10. M. Naftaly, N. Vieweg, A. Deninger, Sensors 19, 4203 (2019)

    Article  Google Scholar 

  11. F. Elmaz, B. Büyükçakır, Ö. Yücel, A.Y. Mutlu, Fuel 266, 117066 (2020)

    Article  Google Scholar 

  12. X. Cui, Q. Wang, Y. Zhao, X. Qiao, G. Teng, Appl. Phys. B: Lasers Optics 125, 1 (2019)

    Article  ADS  Google Scholar 

  13. H. Hao, R. Guo, Q. Gu, X. Hu, Miner. Eng. 143, 105899 (2019)

    Article  Google Scholar 

  14. O. Gazeli, E. Bellou, D. Stefas, S. Couris, Food Chem. 302, 125329 (2020)

    Article  Google Scholar 

  15. E. Bellou, N. Gyftokostas, D. Stefas, O. Gazeli, S. Couris, Spectrochimica Acta - Part B Atomic Spectroscopy 163, 105746 (2020)

    Article  Google Scholar 

  16. R.M. Balabin, R.Z. Safieva, Anal. Chim. Acta 689, 190 (2011)

    Article  Google Scholar 

  17. O. Egorova, R. Hafizi, D.C. Woods, G.M. Day, J. Phys. Chem. A 124, 8065 (2020)

    Article  Google Scholar 

  18. B.X. Xue, M. Barbatti, P.O. Dral, J. Phys. Chem. A 124, 7199 (2020)

    Article  Google Scholar 

  19. M.A. Cusentino, M.A. Wood, A.P. Thompson, J. Phys. Chem. A 124, 5456 (2020)

    Article  Google Scholar 

  20. Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, S.P. Ong, J. Phys. Chem. A 124, 731 (2020)

    Article  Google Scholar 

  21. M.G. Taylor, T. Yang, S. Lin, A. Nandy, J.P. Janet, C. Duan, H.J. Kulik, J. Phys. Chem. A 124, 3286 (2020)

    Article  Google Scholar 

  22. P. Rowe, G. Csányi, D. Alfè, A. Michaelides, Phys. Rev. B 97, 054303 (2018)

    Article  ADS  Google Scholar 

  23. T. Kavzoglu, I. Colkesen, Int. J. Appl. Earth Obs. Geoinf. 11, 352 (2009)

    ADS  Google Scholar 

  24. E. Antono, N.N. Matsuzawa, J. Ling, J.E. Saal, H. Arai, M. Sasago, E. Fujii, J. Phys. Chem. A 124, 8330 (2020)

    Article  Google Scholar 

  25. P. Peng, X. Zhao, X. Pan, W. Ye, Sensors (Switzerland) 18, 1 (2018)

    Google Scholar 

  26. X. Zhai, A.A.S. Ali, A. Amira, F. Bensaali, IEEE Access 4, 8138 (2016)

    Article  Google Scholar 

  27. F. Benrekia, M. Attari, M. Bouhedda, Sensors (Switzerland) 13, 2967 (2013)

    Article  Google Scholar 

  28. C. Cortes and V. Vapnik, Patent no. US5640492A (1997).

  29. A.E. Maxwell, T.A. Warner, F. Fang, Int. J. Remote Sens. 39, 2784 (2018)

    Article  ADS  Google Scholar 

  30. M. Pardo, G. Sberveglieri, Sens. Actuat. B: Chem. 107, 730 (2005)

    Article  Google Scholar 

  31. Ł Lentka, J.M. Smulko, R. Ionescu, C.G. Granqvist, L.B. Kish, Metrol. Measure. Syst. 22, 341 (2015)

    Article  Google Scholar 

  32. S. Güney, A. Atasoy, Sens. Actuat. B: Chem. 166–167, 721 (2012)

    Article  Google Scholar 

  33. J.H. Cho, P.U. Kurup, Sens. Actuat. B: Chem. 160, 542 (2011)

    Article  Google Scholar 

  34. H. Tian, H. Liu, Y. He, B. Chen, L. Xiao, Y. Fei, G. Wang, H. Yu, C. Chen, J. Food Measure. Characteriz. 14, 573 (2020)

    Article  Google Scholar 

  35. Y. Luo, W. Ye, X. Zhao, X. Pan, Y. Cao, Sensors (Switzerland) 17, 1 (2017)

    Google Scholar 

  36. F. Masulli, M. Pardo, G. Sberveglieri, and G. Valentini, in Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2002).

  37. J. Mingers, Mach. Learn. 4, 227 (1989)

    Article  Google Scholar 

  38. C.F. Neese, I.R. Medvedev, G.M. Plummer, A.J. Frank, C.D. Ball, F.C. De Lucia, IEEE Sens. J. 12, 2565 (2012)

    Article  ADS  Google Scholar 

  39. B.M. Fischer, H. Helm, P.U. Jepsen, Proc. IEEE 95, 1592 (2007)

    Article  Google Scholar 

  40. R.M. Smith, M.A. Arnold, Anal. Chem. 87, 10679 (2015)

    Article  Google Scholar 

  41. A. Tekawade, T.E. Rice, M.A. Oehlschlaeger, M.W. Mansha, K. Wu, M.M. Hella, I. Wilke, Appl. Phys. B: Lasers Optics 124, 105 (2018)

    Article  ADS  Google Scholar 

  42. I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tan, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, B.J. Drouin, J.M. Flaud, R.R. Gamache, J.T. Hodges, D. Jacquemart, V.I. Perevalov, A. Perrin, K.P. Shine, M.A.H. Smith, J. Tennyson, G.C. Toon, H. Tran, V.G. Tyuterev, A. Barbe, A.G. Császár, V.M. Devi, T. Furtenbacher, J.J. Harrison, J.M. Hartmann, A. Jolly, T.J. Johnson, T. Karman, I. Kleiner, A.A. Kyuberis, J. Loos, O.M. Lyulin, S.T. Massie, S.N. Mikhailenko, N. Moazzen-Ahmadi, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, O.L. Polyansky, M. Rey, M. Rotger, S.W. Sharpe, K. Sung, E. Starikova, S.A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, E.J. Zak, J. Quant. Spectrosc. Radiat. Transfer 203, 3 (2017)

    Article  ADS  Google Scholar 

  43. H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, H.S.P. Müller, J. Quant. Spectrosc. Radiat. Transfer 60, 883 (1998)

    Article  ADS  Google Scholar 

  44. R.V. Kochanov, I.E. Gordon, L.S. Rothman, P. Wcisło, C. Hill, J.S. Wilzewski, J. Quant. Spectrosc. Radiat. Transfer 177, 15 (2016)

    Article  ADS  Google Scholar 

  45. G. Van Rossum, Python Reference Manual (Amsterdam, 1995).

  46. G. Hinton and S. Roweis, in Advances in Neural Information Processing Systems (2003).

  47. L. van der Maaten, G. Hinton, J. Mach. Learn. Res. 1, 1 (2008)

    Google Scholar 

  48. Y. S. Abu-Mostafa, M. Magdon-Ismail, and H. T. Lin, Learning from data: a short course (AMLBook, 2012).

  49. C.M. Bishop, Machine Learning and Pattern Recoginiton (Springer, New York, 2006).

    Google Scholar 

  50. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, É. Duchesnay, J. Mach. Learn. Res. 12, 2825 (2011)

    MathSciNet  Google Scholar 

  51. B.W. Silverman, M.C. Jones, Int. Stat. Rev./Revue Internationale de Statistique 57, 233 (1989)

    Google Scholar 

  52. T.M. Cover, P.E. Hart, IEEE Trans. Inf. Theory 13, 21 (1967)

    Article  Google Scholar 

  53. M.E. Hellman, IEEE Trans. Syst. Sci. Cybernet. 6, 179 (1970)

    Article  Google Scholar 

  54. K. Fukunaga, L.D. Hostetler, IEEE Trans. Inf. Theory 21, 285 (1975)

    Article  Google Scholar 

  55. T. Bailey, A.K. Jain, IEEE Trans. Syst. Man Cybernet. SMC-8, 311 (1978)

    Google Scholar 

  56. J.E.S. Macleod, A. Luk, D.M. Titterington, IEEE Trans. Syst. Man Cybernet. 17, 689 (1987)

    Article  Google Scholar 

  57. L. Peterson, DOI: https://doi.org/10.4249/Scholarpedia.1883 (2009).

  58. K. Chomboon, P. Chujai, P. Teerarassammee, K. Kerdprasop, and N. Kerdprasop, in International Conference on Industrial Application Engineering (2015).

  59. O. Kramer, in Proceedings - 10th International Conference on Machine Learning and Applications, ICMLA 2011 (2011).

  60. S. Salzberg, Mach. Learn. 16, 235 (1993)

    Google Scholar 

  61. L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression Trees (Chapman & Hall/CRC, Boca Raton, 1984).

    MATH  Google Scholar 

  62. J.R. Quinlan, Machine Learning 1, 81 (1986)

    Google Scholar 

  63. J.R. Quinlan, C4.5: Programs for Machine Learning (Springer, San Mateo, 1993).

    Google Scholar 

  64. Scikit-learn 0.23.2 documentation, Scikit-Learn (2020).

  65. L. Breiman, Mach. Learn. 45, 5 (2001)

    Article  Google Scholar 

  66. P. Geurts, D. Ernst, L. Wehenkel, Mach. Learn. 63, 3 (2006)

    Article  Google Scholar 

  67. C. Cortes, V. Vapnik, Mach. Learn. 20, 273 (1995)

    Google Scholar 

  68. J. Weston and C. Watkins, Citeseer: Technical Report 23 (1998).

  69. A.J. Smola, B. Scholkopf, Stat. Comput. 14, 199 (2004)

    Article  MathSciNet  Google Scholar 

  70. G. Anthony, H. Gregg, and M. Tshilidzi, in 28th Asian Conference on Remote Sensing 2007, ACRS 2007 (2007).

  71. J. Shawe-Taylor and S. Sun, Academic Press Library in Signal Processing: Volume 1 Signal Processing Theory and Machine Learning 1, 857 (2014).

  72. C. Hsu, C. Chang, and C. Lin, National Taiwan University 1396 (2003).

  73. S.S. Keerthi, C.J. Lin, Neural Comput. 15, 1667 (2003)

    Article  Google Scholar 

  74. S. Haykin, Soft Comput. Intell. Syst. 71 (2000).

  75. H.S. Hippert, C.E. Pedreira, R.C. Souza, IEEE Trans. Power Syst. 16, 44 (2001)

    Article  ADS  Google Scholar 

  76. J. Leonard, M.A. Kramer, Comput. Chem. Eng. 14, 337 (1990)

    Article  Google Scholar 

  77. P. J. Werbos, PhD Thesis, Harvard University (1974).

  78. Y. Freund, R.E. Schapire, J. Comput. Syst. Sci. 55, 119 (1997)

    Article  Google Scholar 

  79. Y. Freund, Inf. Comput. 121, 256 (1995)

    Article  Google Scholar 

  80. Y. Freund, R. Schapire, J. Jpn. Soc. Artif. Intell. 14, 771 (1999)

    Google Scholar 

  81. G. Anthony, H. Gregg, and M. Tshilidzi, 28th Asian Conference on Remote Sensing 2007, ACRS 2007 2, 801 (2007).

  82. J.D. Rodríguez, A. Pérez, J.A. Lozano, IEEE Trans. Pattern Anal. Mach. Intell. 32, 569 (2010)

    Article  Google Scholar 

  83. T. Dietterich, ACM Comput. Surv. (CSUR) 27, 326 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation under Grant CBET-1851291.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Arshad Zahangir Chowdhury.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 9730 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, M.A.Z., Rice, T.E. & Oehlschlaeger, M.A. Evaluation of machine learning methods for classification of rotational absorption spectra for gases in the 220–330 GHz range. Appl. Phys. B 127, 34 (2021). https://doi.org/10.1007/s00340-021-07582-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07582-0

Navigation