Abstract
Machine learning (ML) methods are implemented to classify rotational absorption spectra for gas-phase compounds in the THz region, specifically 220–330 GHz where experimental data is available. Eight ML methods were trained in both standard and one-versus-rest (OVR) implementations using simulated absorption spectra for 12 volatile organic compounds and halogenated hydrocarbons of interest in industrial and environmental gas sensing applications. The performance of the resulting ML classifiers was compared against simulated training spectra in both a 70–30 training–testing split and in tenfold cross-validation studies, with the classifiers exhibiting accuracies in the range of 88–99% for simulated spectra. The classifiers were then tested for their ability to classify noisy experimental rotational spectra for methanol, ethanol, formic acid, acetaldehyde, acetonitrile, and chloromethane. The OVR implementations of the support vector machine (SVM) classifier with both linear and radial basis function kernels and the multi-layer perceptron (MLP) classifier achieved average classification accuracies of 87–94% for the experimental dataset. The study shows that THz spectra in the present frequency region provide a sufficient spectral fingerprint for ML classifiers to learn and predict speciation, allowing automated gas sensing. The present methods can be extrapolated to different frequency ranges and compounds and conditions.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
R.H. Jacobsen, D.M. Mittleman, M.C. Nuss, Opt. Lett. 21, 2011 (1996)
C.N. Banwell, E.M. McCash, Fundamentals of Molecular Spectroscopy, 4th edn. (McGraw-Hill Education, New York, 2016).
G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules, 1st edn. (D. Van Nostrand Company Inc., New York, 1945).
H.W. Kroto, Molecular Rotation Spectra, 1st edn. (Wiley, Hoboken, 1975).
C.H. Townes, A.L. Schawlow, Microwave Spectroscopy, 1st edn. (McGraw-Hill Book Company Inc., New York, 1955).
P. Bunker, P. Jensen, Molecular Symmetry and Spectroscopy, 2nd edn. (NRC Research Press, Ottawa, 1998).
T.E. Rice, M.A.Z. Chowdhury, M.W. Mansha, M.M. Hella, I. Wilke, M.A. Oehlschlaeger, Appl. Phys. B: Lasers Optics 126, 152 (2020)
M. W. Mansha, K. Wu, T. E. Rice, M. A. Oehlschlaeger, M. M. Hella, and I. Wilke, Proceedings of IEEE Sensors 3 (2019).
A. Tekawade, T. E. Rice, M. A. Oehlschlaeger, M. W. Mansha, K. Wu, M. M. Hella, and I. Wilke, in International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz (2019).
M. Naftaly, N. Vieweg, A. Deninger, Sensors 19, 4203 (2019)
F. Elmaz, B. Büyükçakır, Ö. Yücel, A.Y. Mutlu, Fuel 266, 117066 (2020)
X. Cui, Q. Wang, Y. Zhao, X. Qiao, G. Teng, Appl. Phys. B: Lasers Optics 125, 1 (2019)
H. Hao, R. Guo, Q. Gu, X. Hu, Miner. Eng. 143, 105899 (2019)
O. Gazeli, E. Bellou, D. Stefas, S. Couris, Food Chem. 302, 125329 (2020)
E. Bellou, N. Gyftokostas, D. Stefas, O. Gazeli, S. Couris, Spectrochimica Acta - Part B Atomic Spectroscopy 163, 105746 (2020)
R.M. Balabin, R.Z. Safieva, Anal. Chim. Acta 689, 190 (2011)
O. Egorova, R. Hafizi, D.C. Woods, G.M. Day, J. Phys. Chem. A 124, 8065 (2020)
B.X. Xue, M. Barbatti, P.O. Dral, J. Phys. Chem. A 124, 7199 (2020)
M.A. Cusentino, M.A. Wood, A.P. Thompson, J. Phys. Chem. A 124, 5456 (2020)
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, S.P. Ong, J. Phys. Chem. A 124, 731 (2020)
M.G. Taylor, T. Yang, S. Lin, A. Nandy, J.P. Janet, C. Duan, H.J. Kulik, J. Phys. Chem. A 124, 3286 (2020)
P. Rowe, G. Csányi, D. Alfè, A. Michaelides, Phys. Rev. B 97, 054303 (2018)
T. Kavzoglu, I. Colkesen, Int. J. Appl. Earth Obs. Geoinf. 11, 352 (2009)
E. Antono, N.N. Matsuzawa, J. Ling, J.E. Saal, H. Arai, M. Sasago, E. Fujii, J. Phys. Chem. A 124, 8330 (2020)
P. Peng, X. Zhao, X. Pan, W. Ye, Sensors (Switzerland) 18, 1 (2018)
X. Zhai, A.A.S. Ali, A. Amira, F. Bensaali, IEEE Access 4, 8138 (2016)
F. Benrekia, M. Attari, M. Bouhedda, Sensors (Switzerland) 13, 2967 (2013)
C. Cortes and V. Vapnik, Patent no. US5640492A (1997).
A.E. Maxwell, T.A. Warner, F. Fang, Int. J. Remote Sens. 39, 2784 (2018)
M. Pardo, G. Sberveglieri, Sens. Actuat. B: Chem. 107, 730 (2005)
Ł Lentka, J.M. Smulko, R. Ionescu, C.G. Granqvist, L.B. Kish, Metrol. Measure. Syst. 22, 341 (2015)
S. Güney, A. Atasoy, Sens. Actuat. B: Chem. 166–167, 721 (2012)
J.H. Cho, P.U. Kurup, Sens. Actuat. B: Chem. 160, 542 (2011)
H. Tian, H. Liu, Y. He, B. Chen, L. Xiao, Y. Fei, G. Wang, H. Yu, C. Chen, J. Food Measure. Characteriz. 14, 573 (2020)
Y. Luo, W. Ye, X. Zhao, X. Pan, Y. Cao, Sensors (Switzerland) 17, 1 (2017)
F. Masulli, M. Pardo, G. Sberveglieri, and G. Valentini, in Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2002).
J. Mingers, Mach. Learn. 4, 227 (1989)
C.F. Neese, I.R. Medvedev, G.M. Plummer, A.J. Frank, C.D. Ball, F.C. De Lucia, IEEE Sens. J. 12, 2565 (2012)
B.M. Fischer, H. Helm, P.U. Jepsen, Proc. IEEE 95, 1592 (2007)
R.M. Smith, M.A. Arnold, Anal. Chem. 87, 10679 (2015)
A. Tekawade, T.E. Rice, M.A. Oehlschlaeger, M.W. Mansha, K. Wu, M.M. Hella, I. Wilke, Appl. Phys. B: Lasers Optics 124, 105 (2018)
I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tan, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, B.J. Drouin, J.M. Flaud, R.R. Gamache, J.T. Hodges, D. Jacquemart, V.I. Perevalov, A. Perrin, K.P. Shine, M.A.H. Smith, J. Tennyson, G.C. Toon, H. Tran, V.G. Tyuterev, A. Barbe, A.G. Császár, V.M. Devi, T. Furtenbacher, J.J. Harrison, J.M. Hartmann, A. Jolly, T.J. Johnson, T. Karman, I. Kleiner, A.A. Kyuberis, J. Loos, O.M. Lyulin, S.T. Massie, S.N. Mikhailenko, N. Moazzen-Ahmadi, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, O.L. Polyansky, M. Rey, M. Rotger, S.W. Sharpe, K. Sung, E. Starikova, S.A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, E.J. Zak, J. Quant. Spectrosc. Radiat. Transfer 203, 3 (2017)
H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, H.S.P. Müller, J. Quant. Spectrosc. Radiat. Transfer 60, 883 (1998)
R.V. Kochanov, I.E. Gordon, L.S. Rothman, P. Wcisło, C. Hill, J.S. Wilzewski, J. Quant. Spectrosc. Radiat. Transfer 177, 15 (2016)
G. Van Rossum, Python Reference Manual (Amsterdam, 1995).
G. Hinton and S. Roweis, in Advances in Neural Information Processing Systems (2003).
L. van der Maaten, G. Hinton, J. Mach. Learn. Res. 1, 1 (2008)
Y. S. Abu-Mostafa, M. Magdon-Ismail, and H. T. Lin, Learning from data: a short course (AMLBook, 2012).
C.M. Bishop, Machine Learning and Pattern Recoginiton (Springer, New York, 2006).
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, É. Duchesnay, J. Mach. Learn. Res. 12, 2825 (2011)
B.W. Silverman, M.C. Jones, Int. Stat. Rev./Revue Internationale de Statistique 57, 233 (1989)
T.M. Cover, P.E. Hart, IEEE Trans. Inf. Theory 13, 21 (1967)
M.E. Hellman, IEEE Trans. Syst. Sci. Cybernet. 6, 179 (1970)
K. Fukunaga, L.D. Hostetler, IEEE Trans. Inf. Theory 21, 285 (1975)
T. Bailey, A.K. Jain, IEEE Trans. Syst. Man Cybernet. SMC-8, 311 (1978)
J.E.S. Macleod, A. Luk, D.M. Titterington, IEEE Trans. Syst. Man Cybernet. 17, 689 (1987)
L. Peterson, DOI: https://doi.org/10.4249/Scholarpedia.1883 (2009).
K. Chomboon, P. Chujai, P. Teerarassammee, K. Kerdprasop, and N. Kerdprasop, in International Conference on Industrial Application Engineering (2015).
O. Kramer, in Proceedings - 10th International Conference on Machine Learning and Applications, ICMLA 2011 (2011).
S. Salzberg, Mach. Learn. 16, 235 (1993)
L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression Trees (Chapman & Hall/CRC, Boca Raton, 1984).
J.R. Quinlan, Machine Learning 1, 81 (1986)
J.R. Quinlan, C4.5: Programs for Machine Learning (Springer, San Mateo, 1993).
Scikit-learn 0.23.2 documentation, Scikit-Learn (2020).
L. Breiman, Mach. Learn. 45, 5 (2001)
P. Geurts, D. Ernst, L. Wehenkel, Mach. Learn. 63, 3 (2006)
C. Cortes, V. Vapnik, Mach. Learn. 20, 273 (1995)
J. Weston and C. Watkins, Citeseer: Technical Report 23 (1998).
A.J. Smola, B. Scholkopf, Stat. Comput. 14, 199 (2004)
G. Anthony, H. Gregg, and M. Tshilidzi, in 28th Asian Conference on Remote Sensing 2007, ACRS 2007 (2007).
J. Shawe-Taylor and S. Sun, Academic Press Library in Signal Processing: Volume 1 Signal Processing Theory and Machine Learning 1, 857 (2014).
C. Hsu, C. Chang, and C. Lin, National Taiwan University 1396 (2003).
S.S. Keerthi, C.J. Lin, Neural Comput. 15, 1667 (2003)
S. Haykin, Soft Comput. Intell. Syst. 71 (2000).
H.S. Hippert, C.E. Pedreira, R.C. Souza, IEEE Trans. Power Syst. 16, 44 (2001)
J. Leonard, M.A. Kramer, Comput. Chem. Eng. 14, 337 (1990)
P. J. Werbos, PhD Thesis, Harvard University (1974).
Y. Freund, R.E. Schapire, J. Comput. Syst. Sci. 55, 119 (1997)
Y. Freund, Inf. Comput. 121, 256 (1995)
Y. Freund, R. Schapire, J. Jpn. Soc. Artif. Intell. 14, 771 (1999)
G. Anthony, H. Gregg, and M. Tshilidzi, 28th Asian Conference on Remote Sensing 2007, ACRS 2007 2, 801 (2007).
J.D. Rodríguez, A. Pérez, J.A. Lozano, IEEE Trans. Pattern Anal. Mach. Intell. 32, 569 (2010)
T. Dietterich, ACM Comput. Surv. (CSUR) 27, 326 (1995)
Acknowledgements
This work was supported by the National Science Foundation under Grant CBET-1851291.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Chowdhury, M.A.Z., Rice, T.E. & Oehlschlaeger, M.A. Evaluation of machine learning methods for classification of rotational absorption spectra for gases in the 220–330 GHz range. Appl. Phys. B 127, 34 (2021). https://doi.org/10.1007/s00340-021-07582-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00340-021-07582-0