A new method for estimating the noise scale factor (NSF) and random errors in lidar observations


The noise scale factor (NSF) is useful in calculating the random errors of lidar signals. A new method is proposed for estimating the NSF of lidar systems. Instead of measuring the solar background in the traditional method that demands special experiments or additional devices, the new method utilizes the molecular backscattered signal fragments of routinely observed lidar profiles to extract the light intensities and shot noises. Based on a 355 nm lidar system, experiments with the two methods have been carried out. The NSF calculated with the new method is 0.6473, very close to the value resulted from the traditional method, which is 0.6496. The experiments indicate that the new method is feasible and accurate. An example of calculating the random errors and signal to noise ratios (SNR) of lidar signals by using NSF is presented. Compared with the results calculated from multiple lidar profiles, the method using NSF eliminates the influence of aerosols and clouds.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    C. Xie, T. Nishizawa, N. Sugimoto, I. Matsui, Z. Wang, Appl. Opt. 47, 27 (2008)

    Article  Google Scholar 

  2. 2.

    Z. Wang, A. Borovoi, A. Konoshonkin, N. Kustova, D. Liu, C. Xie, Opt. Lett. 43, 15 (2018)

    Google Scholar 

  3. 3.

    D.N. Whiteman, S.H. Melfi, R.A. Ferrare, Appl. Opt. 31, 16 (1992)

    Article  Google Scholar 

  4. 4.

    S. Kuang, M.J. Newchurch, J. Burris, X. Liu, Appl. Opt. 52, 15 (2013)

    Article  Google Scholar 

  5. 5.

    G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, S. Houweling, Appl. Phys. B 90, 3-4 (2008)

    ADS  Article  Google Scholar 

  6. 6.

    C. Laurence Korb, B.M. Gentry, S. Xingfu Li, C. Flesia, Appl. Opt. 37, 15 (1998)

    Google Scholar 

  7. 7.

    D. Kim, S. Park, H. Cha, J. Zhou, W. Zhang, Appl. Phys. B 82, 1 (2006)

    Article  Google Scholar 

  8. 8.

    Z. Liu, W. Hunt, M. Vaughan, C. Hostetler, M. McGill, K. Powell, D. Winker, Hu. Yongxiang, Appl. Opt. 45, 18 (2006)

    Google Scholar 

  9. 9.

    W. Huanxue, L. Jianguo, Z. Tianshu, Chin. Phys. B 24, 8 (2015)

    Google Scholar 

  10. 10.

    D. Pan, Z. Tianshu, C. Wei, L. Jianguo, L. Yang, Infrared Laser Eng. 45, S1 (2016)

    Google Scholar 

  11. 11.

    E.J. Welton, J.R. Campbell, J. Atmos. Ocean. Technol. 19, 12 (2002)

    ADS  Article  Google Scholar 

  12. 12.

    C. Xie, J. Zhou, Proc. SPIE 5832, 2 (2005)

    ADS  Article  Google Scholar 

  13. 13.

    L. Yuan, D. Jianhua, W. Maoren, Phys. Eng. 19, 2 (2009)

    Google Scholar 

Download references


This work was supported by the National Key Research and Development Program of China (2017FYC0209803, 2017YFC0210106, and 2018YFC0213503) and the National Natural Science Foundation of China (41621005).

Author information



Corresponding author

Correspondence to Tijian Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Wang, T., Wu, H. et al. A new method for estimating the noise scale factor (NSF) and random errors in lidar observations. Appl. Phys. B 127, 21 (2021). https://doi.org/10.1007/s00340-021-07572-2

Download citation