Skip to main content
Log in

Experimental research on phase diversity method for correcting vortex beam distortion wavefront

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The orbital angular momentum (OAM) of the vortex beam has infinite dimension and are orthogonal to each other. OAM multiplexing technology is one of the key technologies to improve the channel capacity of wireless optical communication system. When the vortex beams propagate in atmospheric turbulence, it will cause wavefront distortion. The phase diversity (PD) method is used to obtain the phase information by inversely extracting the intensity information of the focal plane and the defocus plane, and realize the correction of the vortex beam distortion wavefront. The simulation and experimental results show that the relative powers of the single-mode and multi-mode multiplexed vortex beams can be effectively improved using the PD method to correct the distortion wavefront. The crosstalk between modes is reduced, and the correction effect increases with the decrease of topological charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Phys. Rev. A 45, 8185–8189 (1992)

    Article  ADS  Google Scholar 

  2. J. Wang, J.Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A.E. Willner, Nat. Photonics 6, 488–496 (2012)

    Article  ADS  Google Scholar 

  3. A.E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M.P.J. Lavery, M. Tur, S. Ramachandran, A.F. Molisch, N. Ashrafi, S. Ashraf, Adv. Opt. Photonics 7, 66–106 (2015)

    Article  ADS  Google Scholar 

  4. Y. Ren, H. Huang, G. Xie, N. Ahmed, Y. Yan, B.I. Erkmen, N. Chandrasekaran, M.P.J. Lavery, N.K. Steinhoff, M. Tur, S. Dolinar, M. Neifeld, M.J. Padgett, R.W. Boyd, J.H. Shapiro, A.E. Willner, Opt. Lett. 38, 4062–4065 (2013)

    Article  ADS  Google Scholar 

  5. V.A. Banakh, A.V. Falits, Opt. Spectroscopy 117, 942–948 (2014)

    Article  ADS  Google Scholar 

  6. M. Malik, M. O’Sullivan, B. Rodenburg, M. Mirhosseini, J. Leach, M.P.J. Lavery, M.J. Padgett, R.W. Boyd, Opt. Express 20, 13195–13200 (2012)

    Article  ADS  Google Scholar 

  7. X. He, X. Zhao, S. Cui, H. Gu, Opt. Commun. 429, 127–137 (2018)

    Article  ADS  Google Scholar 

  8. O.L. Antipov, F.Y. Kanev, E.I. Tsyro, D.S. Kuksenok, Atmos. Ocean. Opt. 26, 140–148 (2013)

    Article  Google Scholar 

  9. S. Zhao, L. Wang, L. Zou, L. Gong, W. Cheng, B. Zheng, H. Chen, Opt. Commun. 376, 92–98 (2016)

    Article  ADS  Google Scholar 

  10. Y. Ren, G. Xie, H. Huang, C. Bao, Y. Yan, N. Ahmed, M.P.J. Lavery, B.I. Erkmen, S. Dolinar, M. Tur, M.A. Neifeld, M.J. Padgett, R.W. Boyd, J.H. Shapiro, A.E. Willner, Opt. Lett. 39, 2845–2848 (2014)

    Article  ADS  Google Scholar 

  11. X. Ke, X. Wang, Acta Optica Sinica 38, 204–210 (2018)

    Google Scholar 

  12. H. Ma, C. Fan, P. Zhang, J. Zhang, C. Qiao, H. Wang, Appl. Phys. B-Lasers O. 106, 939–944 (2012)

    Article  ADS  Google Scholar 

  13. S. Sun, Y. Liang, S. Wang, Opto-Electron. Eng. 38, 6–12 (2011)

    Google Scholar 

  14. M. Li, Y. Li, J. Han, Phys. Commun-amst. 25, 323–327 (2017)

    Article  Google Scholar 

  15. A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, M. Ritsch-Marte, Opt. Exp. 15, 5801–5808 (2007)

    Article  ADS  Google Scholar 

  16. C. Gao, S. Zhang, S. Fu, X. Hu, Infrared Laser Eng. 46, 0201001(1–6) (2017)

  17. J. Huang, H. Jin, Q. Ye, G. Meng, Appl. Phys. B-Lasers O. 124, 58(1–7) (2018)

  18. P.M. Blanchard, D.J. Fisher, S.C. Woods, A.H. Greenaway, Appl. Opt. 39, 6649–6655 (2000)

    Article  ADS  Google Scholar 

  19. R.A. Gonsalves, Opt. Eng. 21, 829–832 (1982)

    Article  ADS  Google Scholar 

  20. Y. Wu, B. Wang, J. Zhao, M. Ming, L. Dong, Q. Yang, M. Wang, G. Wang, Opt. Precis. Eng. 18, 1849–1854 (2010)

    Google Scholar 

  21. X. Li, W. Hu, H. Yu, Z. Xu, P. Zhang, C. Yang, L. Xuan, Chin. J. Liq. Cryst. Disp. 32, 234–239 (2017)

    Article  Google Scholar 

  22. D. Yue, H. Nie, Y. Li, C. Ying, Appl. Opt. 57, 1650–1656 (2018)

    Article  ADS  Google Scholar 

  23. A.M. Yao, M.J. Padgett, Adv. Opt. Photonics 3, 161–204 (2011)

    Article  ADS  Google Scholar 

  24. H. Wu, H. Yan, X. Li, S. Li, Acta Optica Sinica 29, 120–125 (2009)

    Article  Google Scholar 

  25. F. Cao, Y. Zhu, Z. Wu, Astron. Res. Technol. 7015, 70154Q(7) (2008)

  26. Q. Li, M. Shen, Photoelectr. Eng. 33(11), 114–119 (2006)

    Google Scholar 

  27. S. Echeverri-Chacón, R. Restrepo, C. Cuartas-Vélez, N. Uribe-Patarroyo, Opt. Lett. 41, 1817–1820 (2016)

    Article  ADS  Google Scholar 

  28. M. Al-Baali, L. Grandinetti, O. Pisacane, J. Optim. Theory Appl. 161, 688–699 (2014)

    Article  MathSciNet  Google Scholar 

  29. H. Zhou, D. Fu, J. Dong, P. Zhang, D. Chen, X. Cai, F. Li, X. Zhang, Light-Sci. Appl. 6, e16251 (2016)

    Article  Google Scholar 

  30. X. Ke, J. Chen, H. Lv, Sci. China Inform. Sci. 56, 1–9 (2013)

    Article  Google Scholar 

  31. S. Fu, C. Gao, Photonics Res. 4, 6–9 (2016)

    Article  Google Scholar 

  32. A. Forbes, A. Dudley, M. McLaren, Adv. Opt. Photon. 8, 200–227 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the key industry innovation chain project of Shaanxi Province (2017ZDCXL-GY-06-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to NaMei Cui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, X., Cui, N. Experimental research on phase diversity method for correcting vortex beam distortion wavefront. Appl. Phys. B 126, 66 (2020). https://doi.org/10.1007/s00340-020-7413-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-7413-7

Navigation