Skip to main content
Log in

The dependence of the supercontinuum coherence time in water jet on the input radiation intensity

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The work present investigates the dependence of the coherence time of an individual spectral supercontinuum on the intensity of femtosecond pumping during its generation in the water jet in the absence of filament. The results obtained show that the coherence time decreases along with pump intensity increase. Experimentally and by means of numerical simulation, it is demonstrated that this is caused by an increase in the linear frequency modulation coefficient in the temporal structure, which leads to the supercontinuum spectrum broadening. The relation can be used as an alternative way to assess the SC coherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Bondarenko, I. Eremina, V. Talanov, Broadening of spectrum in self focusing of light in crystals. Sov. J. Exp. Theor. Phys. Lett. 12, 85 (1970)

    ADS  Google Scholar 

  2. R.R. Alfano, S. Shapiro, Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys. Rev. Lett. 24(11), 592 (1970)

    Article  ADS  Google Scholar 

  3. R. Alfano, S. Shapiro, Emission in the region 4000 to 7000 å via four-photon coupling in glass. Phys. Rev. Lett. 24(11), 584 (1970)

    Article  ADS  Google Scholar 

  4. A. Tsypkin, S. Putilin, M. Melnik, S. Kozlov, S. Klykov, The transmission of 45 bits of information by a pair of interfering femtosecond pulses with superwide spectra. J. Opt. Technol. 80(7), 466–469 (2013)

    Article  Google Scholar 

  5. A.N. Tsypkin, S.E. Putilin, A.V. Okishev, S.A. Kozlov, Ultrafast information transfer through optical fiber by means of quasidiscrete spectral supercontinuums. Opt. Eng. 54(5), 056111 (2015)

    Article  ADS  Google Scholar 

  6. I. Coddington, W.C. Swann, L. Nenadovic, N.R. Newbury, Rapid and precise absolute distance measurements at long range. Nat. Photon. 3(6), 351 (2009)

    Article  ADS  Google Scholar 

  7. H.L. Xu, S.L. Chin, Femtosecond laser filamentation for atmospheric sensing. Sensors 11(1), 32–53 (2011)

    Article  Google Scholar 

  8. H. Tu, S.A. Boppart, Coherent fiber supercontinuum for biophotonics. Laser Photon. Rev. 7(5), 628–645 (2013)

    Article  ADS  Google Scholar 

  9. Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, J. Hu, Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide. Photon. Res. 6(6), 506–510 (2018)

    Article  Google Scholar 

  10. K. Kaneshima, K. Takeuchi, N. Ishii, J. Itatani, Generation of spectrally stable 6.5-fs visible pulses via filamentation in krypton. High Power Laser Sci. Eng. 4 (2016)

  11. A. Dubietis, G. Tamosauskas, R. Suminas, V. Jukna, A. Couairon, Ultrafast supercontinuum generation in bulk condensed media. Lith. J. Phys. 57(3), 113–157 (2017)

    Article  Google Scholar 

  12. S. Chin, A. Brodeur, S. Petit, O. Kosareva, V. Kandidov, Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser). J. Nonlinear Opt. Phys. Mater. 8(01), 121–146 (1999)

    Article  ADS  Google Scholar 

  13. N. Belashenkov, A. Drozdov, S. Kozlov, Y.A. Shpolyanskii, A. Tsypkin, Phase modulation of femtosecond light pulses whose spectra are superbroadened in dielectrics with normal group dispersion. J. Opt. Technol. 75(10), 611–614 (2008)

    Article  Google Scholar 

  14. Y. Yang, W. Bi, X. Li, M. Liao, W. Gao, Y. Ohishi, Y. Fang, Y. Li, Ultrabroadband supercontinuum generation through filamentation in a lead fluoride crystal. JOSA B 36(2), A1–A7 (2019)

    Article  ADS  Google Scholar 

  15. J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78(4), 1135 (2006)

    Article  ADS  Google Scholar 

  16. P. Vasa, J.A. Dharmadhikari, A.K. Dharmadhikari, R. Sharma, M. Singh, D. Mathur, Supercontinuum generation in water by intense, femtosecond laser pulses under anomalous chromatic dispersion. Phys. Rev. A 89(4), 043834 (2014)

    Article  ADS  Google Scholar 

  17. A. Tcypkin, S. Putilin, M. Melnik, E. Makarov, V. Bespalov, S. Kozlov, Generation of high-intensity spectral supercontinuum of more than two octaves in a water jet. Appl. Opt. 55(29), 8390–8394 (2016)

    Article  ADS  Google Scholar 

  18. J.A. Dharmadhikari, G. Steinmeyer, G. Gopakumar, D. Mathur, A.K. Dharmadhikari, Femtosecond supercontinuum generation in water in the vicinity of absorption bands. Opt. Lett. 41, 3475–3478 (2016)

    Article  ADS  Google Scholar 

  19. M. Bellini, T.W. Hänsch, Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer. Opt. Lett. 25(14), 1049–1051 (2000)

    Article  ADS  Google Scholar 

  20. C. Corsi, A. Tortora, M. Bellini, Mutual coherence of supercontinuum pulses collinearly generated in bulk media. Appl. Phys. B 77(2–3), 285–290 (2003)

    Article  ADS  Google Scholar 

  21. G. Genty, A.T. Friberg, J.Turunen, Coherence of supercontinuum light. Prog. Opt. 61, 71–112 (2016)

  22. J.M. Dudley, S. Coen, Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers. IEEE J. Sel. Top. Quantum Electron. 8(3), 651–659 (2002)

    Article  ADS  Google Scholar 

  23. J.M. Dudley, S. Coen, Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. Opt. Lett. 27(13), 1180–1182 (2002)

    Article  ADS  Google Scholar 

  24. R. Dutta, J. Turunen, G. Genty, A.T. Friberg, Temporal coherence characterization of supercontinuum pulse trains using michelson’s interferometer. Appl. Opt. 55(12), B72–B77 (2016)

    Article  Google Scholar 

  25. R. Dutta, A.T. Friberg, G. Genty, J. Turunen, Two-time coherence of pulse trains and the integrated degree of temporal coherence. JOSA A 32(9), 1631–1637 (2015)

    Article  ADS  Google Scholar 

  26. S.L. Chin, S. Petit, F. Borne, K. Miyazaki, The white light supercontinuum is indeed an ultrafast white light laser. Jpn. J. Appl. Phys. 38(2A), L126 (1999)

    Article  ADS  Google Scholar 

  27. J. Zhan, Z. Jie, L. Yun-Quan, L. Kun, Y. Xiao-Hui, H. Zuo-Qiang, Z. Jun, L. Xin, L. Yu-Tong, W. Zhao-Hua et al., Coherence measurement of white light emission from femtosecond laser propagation in air. Chin. Phys. Lett. 22(10), 2608 (2005)

    Article  ADS  Google Scholar 

  28. M.V. Melnik, A.N. Tcypkin, S.A. Kozlov, Temporal coherence of optical supercontinuum. Rom. J. Phys. 63, 203 (2018)

    Google Scholar 

  29. S.A. Kozlov, V.V. Samartsev, Fundamentals of femtosecond optics (Elsevier, New York, 2013)

    Book  Google Scholar 

  30. Y.A. Shpolyanskiy, D. Belov, M. Bakhtin, S. Kozlov, Analytic study of continuum spectrum pulse dynamics in optical waveguides. Appl. Phys. B 77(2–3), 349–355 (2003)

    Article  ADS  Google Scholar 

  31. G.P. Agrawal, Nonlinear fiber optics (Academic press, London, 2007)

    MATH  Google Scholar 

  32. A. Azarenkov, G.B. Al’tshuler, N. Belashenkov, S.A. Kozlov, Fast nonlinearity of the refractive index of solid-state dielectric active media. Quantum Electron. 23(8), 633 (1993)

    Article  ADS  Google Scholar 

  33. V.P. Kandidov, S.A. Shlenov, O.G. Kosareva, Filamentation of high-power femtosecond laser radiation. Quantum Electron. 39(3), 205 (2009)

    Article  ADS  Google Scholar 

  34. A.N. Tcypkin, E.A. Ponomareva, S.E. Putilin, S.V. Smirnov, S.A. Shtumpf, M.V. Melnik, E. Yiwen, S.A. Kozlov, X.-C. Zhang, Flat liquid jet as a highly efficient source of terahertz radiation. Opt. Express 27(11), 15485–15494 (2019)

    Article  ADS  Google Scholar 

  35. E.A. Ponomareva, S.A. Stumpf, A.N. Tcypkin, S.A. Kozlov, Impact of laser-ionized liquid nonlinear characteristics on the efficiency of terahertz wave generation. Opt. Lett. 44(22), 5485–5488 (2019)

    Article  ADS  Google Scholar 

  36. Z. Wilkes, S. Varma, Y.-H. Chen, H. Milchberg, T. Jones, A. Ting, Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry. Appl. Phys. Lett. 94(21), 211102 (2009)

    Article  ADS  Google Scholar 

  37. M. Daimon, A. Masumura, Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Appl. Opt. 46(18), 3811–3820 (2007)

    Article  ADS  Google Scholar 

  38. S. Kedenburg, M. Vieweg, T. Gissibl, H. Giessen, Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Opt. Mater. Exp. 2(11), 1588–1611 (2012)

    Article  ADS  Google Scholar 

  39. M. Born, E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, New York, 2013)

    MATH  Google Scholar 

Download references

Funding

The study is funded by RFBR project No. 18-32-00027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksim Melnik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnik, M., Vorontsova, I., Putilin, S. et al. The dependence of the supercontinuum coherence time in water jet on the input radiation intensity. Appl. Phys. B 126, 60 (2020). https://doi.org/10.1007/s00340-020-7411-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-7411-9

Navigation