Skip to main content
Log in

Rapid fabrication of spiral phase plate on fused silica by laser-induced microplasma

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Spiral phase plate is the most commonly used optical element for generating an optical vortex beam. It is widely applied due to its higher efficiency and less complex structure compared to other optical elements used for this purpose. The paper presents a simple, reliable and high-performance technology for manufacturing of a spiral phase plate on fused silica to generate an annular beam at a wavelength of 632.8 nm. The spiral phase plate is formed with the laser-induced microplasma processing method. In this case, the fabrication step takes no more than 7 min. We have performed and compared annealing in a furnace and chemical etching in an alkali solution as an additional treatment to significantly decrease surface roughness in the area of plasma plume action. Testing confirmed the working ability of the spiral phase plate according to the standard registering procedure of the ring intensity distribution in the far field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Xuewen, Z. Nie, Y. Liang, J. Wang, T. Li, B. Jia, Nanophotonics 7, 9 (2018)

    ADS  Google Scholar 

  2. A. Porfirev, A. Kuchmizhak, Appl. Phys. Lett. 113, 17 (2018)

    Google Scholar 

  3. L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Phys. Rev. A 45, 11 (1992)

    Google Scholar 

  4. A.M. Yao, M.J. Padgett, Adv. Opt. Photonics 3, 2 (2011)

    Google Scholar 

  5. J. Ng, Z. Lin, C.T. Chan, Phys. Rev. Lett. 104, 10 (2010)

    Google Scholar 

  6. S.H. Tao, X.-C. Yuan, J. Lin, X. Peng, H.B. Niu, Opt. Express 13, 20 (2005)

    ADS  Google Scholar 

  7. W.M. Lee, X.-C. Yuan, W.C. Cheong, Opt. Lett. 29, 15 (2004)

    ADS  Google Scholar 

  8. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, T. Omatsu, Nano Lett. 12, 7 (2012)

    Google Scholar 

  9. A. Ambrosio, L. Marucci, F. Borbone, A. Roviello, P. Maddalena, Nat. Commun. 3, 989 (2012)

    ADS  Google Scholar 

  10. C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, M. Ritsch-Marte, J. Microsc. 230, 1 (2008)

    MathSciNet  Google Scholar 

  11. G. Ruffato, M. Massari, G. Parisi, F. Romanato, Opt. Express 25, 7 (2017)

    Google Scholar 

  12. W. Li, K.S. Morgan, Y. Li, J.K. Miller, G. White, R.J. Watkins, E.G. Johnson, Opt. Express 27, 4 (2019)

    Google Scholar 

  13. J. Arlt, K. Dholakia, L. Allen, M.J. Padgett, J. Mod. Opt. 45, 6 (1998)

    Google Scholar 

  14. V.V. Kotlyar, A.A. Kovalev, A.P. Porfirev, Opt. Lett. 42, 1 (2017)

    Google Scholar 

  15. M. Guillon, B.C. Forget, A.J. Foust, V. De Sars, M. Ritsch-Marte, V. Emiliani, Opt. Express 25, 11 (2017)

    Google Scholar 

  16. J. Courtial, M.J. Padgett, Opt. Commun. 159, 1–3 (1999)

    ADS  Google Scholar 

  17. M.J. Padgett, L. Allen, J. Opt. B 4, 2 (2002)

    Google Scholar 

  18. M. Massari, G. Ruffato, M. Gintoli, F. Ricci, F. Romanato, Appl. Opt. 54, 13 (2015)

    Google Scholar 

  19. C. Jun, K. Deng-Feng, G. Min, F. Zhi-Liang, Chin. Phys. Lett. 26, 1 (2009)

    Google Scholar 

  20. M. Cano-Garcia, X. Quintana, J.M. Oton, M.A. Geday, Sci. Rep. 8, 1 (2018)

    Google Scholar 

  21. W.C. Cheong, W.M. Lee, X.C. Yuan, L.C. Zhang, K. Dholakia, H. Wang, Appl. Phys. Lett. 85, 23 (2004)

    Google Scholar 

  22. L. Shi, Z. Zhang, A. Cao, X. Luo, Q. Deng, Opt. Express 23, 7 (2015)

    Google Scholar 

  23. K. Sueda, G. Miyaji, N. Miyanaga, M. Nakatsuka, Opt. Express 12, 15 (2004)

    Google Scholar 

  24. S.S.R. Oemrawsingh, J.A.W. Van Houwelingen, E.R. Eliel, J.P. Woerdman, E.J.K. Verstegen, J.G. Kloosterboer, G.W. Hoft, Appl. Opt. 43, 3 (2004)

    Google Scholar 

  25. G. Ruffato, M. Massari, M. Carli, F. Romanato, Opt. Eng. 54, 11 (2015)

    Google Scholar 

  26. G.R. Chabrol, A. Ciceron, P. Twardowski, P. Pfeiffer, M. Flury, F. Mermet, S. Lecler, Appl. Surf. Sci. 374, 375 (2016)

    ADS  Google Scholar 

  27. S. Xu, B. Liu, C. Pan, L. Ren, B. Tang, Q. Hu, L. Jiang, J. Mater. Process. Technol. 247, 204 (2017)

    Google Scholar 

  28. J. Wang, H. Niino, A. Yabe, Appl. Phys. A 68, 1 (1999)

    Google Scholar 

  29. J. Zhang, K. Sugioka, K. Midorikawa, Appl. Phys. A 69, 1 (1999)

    Google Scholar 

  30. B. Hopp, C. Vass, T. Smausz, Z. Bor, J. Phys. D 39, 22 (2006)

    Google Scholar 

  31. R. Zakoldaev, G. Kostyuk, V. Rymkevich, V. Koval, M. Sergeev, V. Veiko, E. Yakovlev, A. Sivers, J. Laser Micro Nanoeng. 12, 3 (2017)

    Google Scholar 

  32. G. Kostyuk, R. Zakoldaev, V. Koval, M. Sergeev, V. Rymkevich, Opt. Lasers Eng. 92, 63 (2017)

    Google Scholar 

  33. J. Leach, E. Yao, M.J. Padgett, New J. Phys. 6, 1 (2004)

    MathSciNet  Google Scholar 

  34. G.A. Turnbull, D.A. Robertson, G.M. Smith, L. Allen, M. Padgett, J. Opt. Commun. 127, 4–6 (1996)

    Google Scholar 

  35. J.E. Curtis, D.G. Grier, Phys. Rev. Lett. 90, 13 (2003)

    Google Scholar 

  36. G. Ruffato, M. Massari, F. Romanato, Opt. Lett. 39, 17 (2014)

    Google Scholar 

  37. M.J. Padgett, L. Allen, Opt. Commun. 121, 1–3 (1995)

    Google Scholar 

  38. D.L. Andrews, Photonics: Fundamentals of Photonics and Physics (Wiley, Norwich, 2015)

    Google Scholar 

  39. V.P. Veiko, S.A. Volkov, R.A. Zakoldaev, M.M. Sergeev, A.A. Samokhvalov, G.K. Kostyuk, K.A. Milyaev, Quantum Electron. 47, 9 (2017)

    Google Scholar 

  40. V.V. Kotlyar, A.A. Kovalev, Opt. Lett. 33, 2 (2008)

    Google Scholar 

  41. W.M. Steen, J. Mazumder, Laser Material Processing (Springer, London, 2010)

    Google Scholar 

  42. Y.S. Rumala, A.E. Leanhardt, J. Opt. Soc. Am. B 30, 3 (2013)

    Google Scholar 

Download references

Acknowledgements

The reported study was financially supported by the Ministry of Science and Higher Education of the Russian Federation Research Agreement No. 075-11-2019-066 of 22.11.2019 (within the framework of decree of the Government of the Russian Federation No. 218 of 09/04/2010). SEM measurements were done on the base of Interdisciplinary Resource Centre for Nanotechnology, Research Park, St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Shkuratova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkuratova, V., Kostyuk, G., Sergeev, M. et al. Rapid fabrication of spiral phase plate on fused silica by laser-induced microplasma. Appl. Phys. B 126, 61 (2020). https://doi.org/10.1007/s00340-020-7410-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-7410-x

Navigation