Skip to main content
Log in

A QCL-based metrological-grade source at 6 μm

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In view of high-precision molecular spectroscopy in the infrared, we realized a narrow-linewidth laser source at 5.8 \(\upmu\)m traceable to the second in the International System of Units by mixing two near-infrared lasers in an orientation-patterned GaP crystal. The generated radiation is traceable to a Cs fountain through an optical fiber-delivered carrier; its estimated linewidth is 2.3 kHz at 1 s integration time. A quantum cascade laser emitting at the same wavelength is used to boost the power of the mid-IR radiation up to few tens of mW. Thanks to a phase-locking loop, about 70% of the quantum cascade laser output power is within the linewidth of the difference-frequency radiation. This apparatus is used for absolute molecular spectroscopy in a region, above 5 \(\upmu\)m, where high-precision traceability and reliable operation are still challenging. In this paper, we provide the basic information to implement a powerful and metrological grade source in the mid-infrared for precision measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Svanberg, Laser spectroscopy for medical applications, in Laser Spectroscopy for Sensing, ed. by M. Baudelet (Woodhead Publishing, Sawston, 2014), pp. 421–460

    Chapter  Google Scholar 

  2. I. Bayrakli, Breath analysis using external cavity diode lasers: a review. J. Biomed. Opt. 22, 040901 (2017)

    Article  ADS  Google Scholar 

  3. S. Svanberg, G. Zhao, H. Zhang, J. Huang, M. Lian, T. Li, S. Zhu, Y. Li, Z. Duan, H. Lin, K. Svanberg, Laser spectroscopy applied to environmental, ecological, food safety, and biomedical research. Opt. Express 24, A515 (2016)

    Article  ADS  Google Scholar 

  4. I. Galli, S. Bartalini, R. Ballerini, M. Barucci, P. Cancio, M. De Pas, G. Giusfredi, D. Mazzotti, N. Akikusa, P. De Natale, Spectroscopic detection of radiocarbon dioxide at parts-per-quadrillion sensitivity. Optica 3, 385 (2016)

    Article  ADS  Google Scholar 

  5. A.J. Fleisher, D.A. Long, Q. Liu, L. Gameson, J.T. Hodges, Optical measurement of radiocarbon below unity fraction modern by linear absorption spectroscopy. J. Phys. Chem. Lett. 8, 4550 (2017)

    Article  Google Scholar 

  6. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T.W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M.T. Murphy, T. Kentischer, W. Schmidt, T. Udem, Laser frequency combs for astronomical observations. Science 321, 1335 (2008)

    Article  ADS  Google Scholar 

  7. D. DeMille, J.M. Doyle, A.O. Sushkov, Probing the frontiers of particle physics with tabletop-scale experiments. Science 357, 990 (2017)

    Article  ADS  Google Scholar 

  8. M. Safronova, D. Budker, D. DeMille, D.F.J. Kimball, A. Derevianko, C.W. Clark, Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Borri, G. Santambrogio, Laser spectroscopy of cold molecules. Adv. Phys. X 1, 368 (2016)

    Google Scholar 

  10. A. Schliesser, N. Picqué, T.W. Hänsch, Mid-infrared frequency combs. Nat. Photon. 6, 440 (2012)

    Article  ADS  Google Scholar 

  11. B. Argence, B. Chanteau, O. Lopez, D. Nicolodi, M. Abgrall, C. Chardonnet, C. Daussy, B. Darquié, Y.L. Coq, A. Amy-Klein, Quantum cascade laser frequency stabilization at the sub-Hz level. Nat. Photon. 9, 456 (2015)

    Article  ADS  Google Scholar 

  12. U. Bressel, I. Ernsting, S. Schiller, 5 \(\mu\)m laser source for frequency metrology based on difference frequency generation. Opt. Lett. 37, 918 (2012)

    Article  ADS  Google Scholar 

  13. M.G. Hansen, I. Ernsting, S.V. Vasilyev, A. Grisard, E. Lallier, B. Gérard, S. Schiller, Robust, frequency-stable and accurate mid-IR laser spectrometer based on frequency comb metrology of quantum cascade lasers up-converted in orientation-patterned GaAs. Opt. Express 21, 27043 (2013)

    Article  ADS  Google Scholar 

  14. A. Gambetta, M. Cassinerio, N. Coluccelli, E. Fasci, A. Castrillo, L. Gianfrani, D. Gatti, M. Marangoni, P. Laporta, G. Galzerano, Direct phase-locking of a 8.6-\(\mu\)m quantum cascade laser to a mid-IR optical frequency comb: application to precision spectroscopy of N\(_\text{2 }\)O. Opt. Lett. 40, 304 (2015)

    Article  ADS  Google Scholar 

  15. M. Lamperti, B. AlSaif, D. Gatti, M. Fermann, P. Laporta, A. Farooq, M. Marangoni, Absolute spectroscopy near 7.8 \(\mu\)m with a comb-locked extended-cavity quantum-cascade-laser. Sci. Rep. 8, 1292 (2018)

    Article  ADS  Google Scholar 

  16. G. Insero, S. Borri, D. Calonico, P. Cancio Pastor, C. Clivati, D. D’Ambrosio, P. De Natale, M. Inguscio, F. Levi, G. Santambrogio, Measuring molecular frequencies in the 1–10 μm range at 11-digits accuracy. Sci. Rep. 7, 12780 (2017)

    Article  ADS  Google Scholar 

  17. M.G. Hansen, E. Magoulakis, Q.-F. Chen, I. Ernsting, S. Schiller, Quantum cascade laser-based mid-IR frequency metrology system with ultra-narrow linewidth and 1 × 10−13-level frequency instability. Opt. Lett. 40, 2289 (2015)

    Article  ADS  Google Scholar 

  18. I. Galli, M. Siciliani de Cumis, F. Cappelli, S. Bartalini, D. Mazzotti, S. Borri, A. Montori, N. Akikusa, M. Yamanishi, G. Giusfredi, P. Cancio, P. De Natale, Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy. Appl. Phys. Lett. 102, 121117 (2013)

    Article  ADS  Google Scholar 

  19. M. Fujieda, D. Piester, T. Gotoh, J. Becker, M. Aida, A. Bauch, Carrier-phase two-way satellite frequency transfer over a very long baseline. Metrologia 51, 253 (2014)

    Article  ADS  Google Scholar 

  20. G. Petit, A. Kanj, S. Loyer, J. Delporte, F. Mercier, F. Perosanz, 1 × 10−16 frequency transfer by GPS PPP with integer ambiguity resolution. Metrologia 52, 301 (2015)

    Article  ADS  Google Scholar 

  21. C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, A clock network for geodesy and fundamental science. Nat. Commun. 7, 12443 (2016)

    Article  ADS  Google Scholar 

  22. D. Calonico, E.K. Bertacco, C.E. Calosso, C. Clivati, G.A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D.V. Sutyrin, G. Tino, M.E. Zucco, F. Levi, High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link. Appl. Phys. B 117, 979 (2014)

    Article  ADS  Google Scholar 

  23. L. Sliwczynski, P. Krehlik, A. Czubla, L. Buczek, M. Lipinski, Dissemination of time and RF frequency via a stabilized fibre optic link over a distance of 420 km. Metrologia 50, 133 (2013)

    Article  ADS  Google Scholar 

  24. S.C. Ebenhag, P.O. Hedekvist, P. Jarlemark, R. Emardson, K. Jaldehag, C. Rieck, P. Lothberg, Measurements and error sources in time transfer using asynchronous fiber network. IEEE Trans. Instrum. Meas. 59, 1918 (2010)

    Article  Google Scholar 

  25. F.L. Hong, M. Musha, M. Takamoto, H. Inaba, S. Yanagimachi, A. Takamizawa, K. Watabe, T. Ikegami, M. Imae, Y. Fujii, M. Amemiya, K. Nakagawa, K. Ueda, H. Katori, Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer. Opt. Lett. 34, 692 (2009)

    Article  ADS  Google Scholar 

  26. B. Wang, C. Gao, W. Chen, J. Miao, X. Zhu, Y. Bai, J. Zhang, Y. Feng, T. Li, L. Wang, Precise and continuous time and frequency synchronization at the 5\(\times\)1E-19 accuracy level. Sci. Rep. 2, 556 (2012)

    Article  ADS  Google Scholar 

  27. G. Marra, R. Slavik, H.S. Margolis, S.N. Lea, P. Petropoulos, D.J. Richardson, P. Gill, High resolution microwave frequency transfer over a 86 km long optical fibre network using an optical frequency comb. Opt. Lett. 36, 511 (2011)

    Article  ADS  Google Scholar 

  28. D. D’Ambrosio, S. Borri, M. Verde, A. Borgognoni, G. Insero, P. De Natale, G. Santambrogio, Approaching the transit time limit for high-precision spectroscopy on metastable CO around 6 μm. Phys. Chem. Chem. Phys. 21, 24506 (2019)

    Article  Google Scholar 

  29. C. Clivati, A. Mura, D. Calonico, F. Levi, G.A. Costanzo, C.E. Calosso, A. Godone, Planar-waveguide external cavity laser stabilization for an optical link with 10\(^{-19}\) frequency stability. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 58, 2582 (2011)

    Article  Google Scholar 

  30. F. Levi, D. Calonico, C.E. Calosso, A. Godone, S. Micalizio, G.A. Costanzo, Accuracy evaluation of ITCsF2: a nitrogen cooled caesium fountain. Metrologia 51, 270 (2014)

    Article  ADS  Google Scholar 

  31. P.A. Williams, W.C. Swann, N.R. Newbury, High-stability transfer of an optical frequency over long fiber-optic links. J. Opt. Soc. Am. B 25, 1284 (2008)

    Article  ADS  Google Scholar 

  32. C. Clivati, G. Cappellini, L.F. Livi, F. Poggiali, M. Siciliani de Cumis, M. Mancini, G. Pagano, M. Frittelli, A. Mura, G.A. Costanzo, F. Levi, D. Calonico, L. Fallani, J. Catani, M. Inguscio, Measuring absolute frequencies beyond the GPS limit via long-haul optical frequency dissemination. Opt. Express 24, 11865 (2016)

    Article  ADS  Google Scholar 

  33. M.A. Lombardi, “The use of GPS” disciplined oscillators as primary frequency standards for calibration and metrology laboratories. NCSLI Meas. J. Meas. Sci. 3, 56 (2008)

    Article  Google Scholar 

  34. G. Insero, C. Clivati, D. D’Ambrosio, P. De Natale, G. Santambrogio, P. Schunemann, J.-J. Zondy, S. Borri, Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals. Opt. Lett. 41, 5114 (2016)

    Article  ADS  Google Scholar 

  35. H. Telle, B. Lipphardt, J. Stenger, Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements. Appl. Phys. B 74, 1 (2002)

    Article  ADS  Google Scholar 

  36. I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, Ultra-stable, widely tunable and absolutely linked mid-IR coherent source. Opt. Express 17, 9582 (2009)

    Article  ADS  Google Scholar 

  37. F. Cappelli, I. Galli, S. Borri, G. Giusfredi, P. Cancio, D. Mazzotti, A. Montori, N. Akikusa, M. Yamanishi, S. Bartalini, P. De Natale, Subkilohertz linewidth room-temperature mid-infrared quantum cascade laser using a molecular sub-Doppler reference. Opt. Lett. 37, 4811 (2012)

    Article  ADS  Google Scholar 

  38. D.S. Elliott, R. Roy, S. Smith, Extracavity laser band-shape and bandwidth modification. Phys. Rev. A 26, 12 (1982)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge dr. Samuel Meek for designing and providing the balanced photodiodes.

Funding

This work was partially funded by INFN under the SUPREMO project and Ente Cassa di Risparmio di Firenze under the COSMO project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Borri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Ambrosio, D., Borri, S., Calonico, D. et al. A QCL-based metrological-grade source at 6 μm. Appl. Phys. B 126, 41 (2020). https://doi.org/10.1007/s00340-020-7388-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-7388-4

Navigation