Skip to main content
Log in

Multipass-assisted dual-comb gas sensor for multi-species detection using a free-running fiber laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We demonstrated a multipass-assisted dual-comb gas sensor for the simultaneous and sensitive detection of C2H2 and NH3 near 1.5 μm using a single free-running fiber laser. Two pulse trains generated from the shared cavity in the passively mode-locked fiber laser ensure the mutual coherence and common-mode noise rejection. One of the comb pulse trains passed through an open-path multipass cell with an effective path length of 4 m. A synchronized acquisition technique was adopted for more efficient interferogram acquisition compared with the conventional continuous acquisition method. At an acquisition time of 1.5 s, we obtained a signal-to-noise ratio of more than 600  by 1500 averages of the acquired spectrum of 0.1% C2H2. Pressure broadening of C2H2 and NH3 in the frequency range of 6503–6530 cm−1 between 0.1 and 1 bar were captured by the dual-comb sensor. Finally, the free-running fiber laser-based dual-comb sensor successfully analyzed the C2H2/NH3 mixtures, enabling real-time gas sensing without using complex optical and electronic feedback systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Udem, R. Holzwarth, T.W. Hänsch, Nature 416, 233 (2002)

    Article  ADS  Google Scholar 

  2. S.T. Cundiff, J. Ye, Rev. Mod. Phys. 75, 325 (2003)

    Article  ADS  Google Scholar 

  3. T.W. Hänsch, Rev. Mod. Phys. 78, 1297 (2006)

    Article  ADS  Google Scholar 

  4. N. Picqué, T.W. Hänsch, Nat. Photon. 13, 146 (2019)

    Article  ADS  Google Scholar 

  5. S.A. Diddams, L. Hollberg, V. Mbele, Nature 445, 627 (2007)

    Article  Google Scholar 

  6. C. Gohle, B. Stein, A. Schliesser, T. Udem, T.W. Hänsch, Phys. Rev. Lett. 99, 263902 (2007)

    Article  ADS  Google Scholar 

  7. S. Schiller, Opt. Lett. 27, 766 (2002)

    Article  ADS  Google Scholar 

  8. I. Coddington, N. Newbury, W. Swann, Optica 3, 414 (2016)

    Article  ADS  Google Scholar 

  9. T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, T.W. Hänsch, Nat. Commun. 5, 3375 (2014)

    Article  ADS  Google Scholar 

  10. I. Coddington, W.C. Swann, N.R. Newbury, Phys. Rev. Lett. 100, 013902 (2008)

    Article  ADS  Google Scholar 

  11. P. Giaccari, J.-D. Deschênes, P. Saucier, J. Genest, P. Tremblay, Opt. Express 16, 4347 (2008)

    Article  ADS  Google Scholar 

  12. J. Roy, J.-D. Deschênes, S. Potvin, J. Genest, Opt. Express 20, 21932 (2012)

    Article  ADS  Google Scholar 

  13. T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, H. Inaba, Sci. Rep. 5, 10786 (2015)

    Article  ADS  Google Scholar 

  14. S. Potvin, S. Boudreau, J.-D. Deschênes, J. Genest, Appl. Opt. 52, 248 (2013)

    Article  ADS  Google Scholar 

  15. X. Zhao, Z. Zheng, L. Liu, Y. Liu, Y. Jiang, X. Yang, J. Zhu, Opt. Express 19, 1168 (2011)

    Article  ADS  Google Scholar 

  16. T. Ideguchi, T. Nakanura, Y. Kobayashi, K. Goda, Optica 3, 748 (2016)

    Article  ADS  Google Scholar 

  17. S. Mehravar, R.A. Norwood, N. Peyghambarian, K. Kieu, Appl. Phys. Lett. 108, 231104 (2016)

    Article  ADS  Google Scholar 

  18. S.M. Link, D.J.H.C. Maas, D. Waldburger, U. Keller, Science 356, 1164 (2017)

    Article  Google Scholar 

  19. X. Zhao, T. Li, Y. Liu, Q. Li, Z. Zheng, Photon. Res. 6, 853 (2018)

    Article  Google Scholar 

  20. Y. Nakajima, Y. Hata, K. Minoshima, Opt. Express 27, 5931 (2019)

    Article  ADS  Google Scholar 

  21. M.I. Kayes, N. Abdukerim, A. Rekikand, M. Rochette, Opt. Lett. 43, 5809 (2018)

    Article  ADS  Google Scholar 

  22. X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, Z. Zheng, Opt. Express 24, 21833 (2016)

    Article  ADS  Google Scholar 

  23. R. Liao, Y. Song, W. Liu, H. Shi, L. Chai, M. Hu, Opt. Express 26, 11046 (2018)

    Article  ADS  Google Scholar 

  24. Y. Zhao, C. Shu, Appl. Phys. Lett. 72, 1556 (1998)

    Article  ADS  Google Scholar 

  25. P.C. Becker, N.A. Olsson, J.R. Simpson, Erbium-doped fiber amplifiers: fundamentals and technology (Academic Press, San Diego, 1999)

    Google Scholar 

  26. H. Zhang, D.Y. Tang, X. Wu, L.M. Zhao, Opt. Express 17, 12692 (2009)

    Article  ADS  Google Scholar 

  27. I. Coddington, W.C. Swann, N.R. Newbury, Phys. Rev. A 82, 043817 (2010)

    Article  ADS  Google Scholar 

  28. A. Foltynowicz, P. Maslowski, T. Ban, F. Adler, K.C. Cossel, T.C. Briles, J. Ye, Faraday Discuss. 150, 23 (2011)

    Article  ADS  Google Scholar 

  29. I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tan, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, B.J. Drouin, J.M. Flaud, R.R. Gamache, J.T. Hodges, D. Jacquemart, V.I. Perevalov, A. Perrin, K.P. Shine, M.A.H. Smith, J. Tennyson, G.C. Toon, H. Tran, V.G. Tyuterev, A. Barbe, A.G. Császár, V.M. Devi, T. Furtenbacher, J.J. Harrison, J.M. Hartmann, A. Jolly, T.J. Johnson, T. Karman, I. Kleiner, A.A. Kyuberis, J. Loos, O.M. Lyulin, S.T. Massie, S.N. Mikhailenko, N. Moazzen-Ahmadi, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, O.L. Polyansky, M. Rey, M. Rotger, S.W. Sharpe, K. Sung, E. Starikova, S.A. Tashkun, J.V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, E.J. Zak, J. Quant. Spectrosc. Radiat. Transf. 203, 3 (2017)

    Article  ADS  Google Scholar 

  30. J. Chen, X. Zhao, Z. Yao, T. Li, Q. Li, S. Xie, J. Liu, Z. Zheng, Opt. Express 27, 11406 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China (51776179, 61435002, 61675014, 61675015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng Zheng or Wei Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Zhao, X., Wang, Z. et al. Multipass-assisted dual-comb gas sensor for multi-species detection using a free-running fiber laser. Appl. Phys. B 126, 39 (2020). https://doi.org/10.1007/s00340-020-7382-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-7382-x

Navigation