Skip to main content
Log in

A one-way coupled model for the vibration of tuning fork-based trace gas sensors driven by a thermoacoustic wave

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a single computational model for both quartz-enhanced photoacoustic spectroscopy and resonant optothermoacoustic detection trace gas sensors. These sensors employ a quartz tuning fork to detect the acoustic pressure and thermal waves generated when a laser excites a trace gas. The model is based on a coupled system of equations developed by Morse and Ingard for pressure and temperature in a fluid. The pressure and temperature solutions drive the resonant vibration of the tuning fork, which is modeled using the equations of linear elasticity. At high ambient pressure, excellent agreement is obtained with laboratory experiments. This result provides the first quantitative match between a fully computational simulation and experiments for a QEPAS sensor. Such a model could ultimately facilitate sensor design optimization. At low ambient pressure (less than 60 Torr), quantitative agreement is obtained after reweighting the contributions from the pressure and thermal components of the signal. While this result is a substantial improvement over previous results in which a scaling factor was required to obtain agreement at any ambient pressure, at low pressures, it appears that a more accurate physical model may be required to match experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Patimisco, G. Scamarcio, F.K. Tittel, V. Spagnolo, Quartz-enhanced photoacoustic spectroscopy: a review. Sensors 14(4), 6165–6206 (2014)

    Article  Google Scholar 

  2. A. Kosterev, Y. Bakhirkin, R. Curl, F. Tittel, Quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 27, 1902–1904 (2002)

    Article  ADS  Google Scholar 

  3. A. Elia, P.M. Lugará, C. Di Franco, V. Spagnolo, Photoacoustic techniques for trace gas sensing based on semiconductor laser sources. Sensors 9(12), 9616–9628 (2009)

    Article  Google Scholar 

  4. A.A. Kosterev, F.K. Tittel, D.V. Serebryakov, A.L. Malinovsky, I.V. Morozov, Applications of quartz tuning forks in spectroscopic gas sensing. Rev. Sci. Instrum. 76(4), 043105 (2005)

    Article  ADS  Google Scholar 

  5. H. Zheng, X. Yin, L. Dong, H. Wu, X. Liu, W. Ma, L. Zhang, W. Yin, S. Jia, Multi-quartz enhanced photoacoustic spectroscopy with different acoustic microresonator configurations. J. Spectrosc. 2015, 6 (2015)

    Article  Google Scholar 

  6. P. Patimisco, A. Sampaolo, L. Dong, F.K. Tittel, V. Spagnolo, Recent advances in quartz enhanced photoacoustic sensing. Appl. Phys. Rev. 5(1), 011106 (2018)

    Article  ADS  Google Scholar 

  7. A.A. Kosterev, J.H. Doty III, Resonant optothermoacoustic detection: technique for measuring weak optical absorption by gases and micro-objects. Opt. Lett. 35(21), 3571–3573 (2010)

    Article  ADS  Google Scholar 

  8. M. Spajer, B. Cavallier, S. Euphrasie, G. Matten, X. Vacheret, P. Vairac, D. Vernier, A. Jalocha, Thermoelastic investigation of a quartz tuning fork used in infrared spectroscopy. Appl. Phys. Lett. 103(20), 201111 (2013)

    Article  ADS  Google Scholar 

  9. R. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F. Tittel, Quantum cascade lasers in chemical physics. Chem. Phys. Lett. 487, 1–18 (2010)

    Article  ADS  Google Scholar 

  10. H. Zheng, L. Dong, H. Wu, X. Yin, L. Xiao, S. Jia, R. Curl, F. Tittel, Application of acoustic micro-resonators in quartz-enhanced photoacoustic spectroscopy for trace gas analysis. Chem. Phys. Lett. 691, 462–472 (2018)

    Article  ADS  Google Scholar 

  11. L. Dong, A.A. Kosterev, D. Thomazy, F.K. Tittel, QEPAS spectrophones: design, optimization, and performance. Appl. Phys. B 100, 627–635 (2010)

    Article  ADS  Google Scholar 

  12. Y. Liu, J. Chang, J. Lian, Z. Liu, Q. Wang, Z. Qin, Quartz-enhanced photoacoustic spectroscopy with right-angle prism. Sensors 16, 214 (2016)

    Article  Google Scholar 

  13. L. Dong, H. Wu, H. Zheng, Y. Liu, X. Liu, W. Jiang, L. Zhang, W. Ma, W. Ren, W. Yin, S. Jia, F.K. Tittel, Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 39(8), 2479–2482 (2014)

    Article  ADS  Google Scholar 

  14. N. Petra, J. Zweck, A.A. Kosterev, S.E. Minkoff, D. Thomazy, Theoretical analysis of a quartz-enhanced photoacoustic spectroscopy sensor. Appl. Phys. B 94(4), 673–680 (2009)

    Article  ADS  Google Scholar 

  15. S. Firebaugh, E. Terray, L. Dong, Optimization of resonator radial dimensions for quartz enhanced photoacoustic spectroscopy systems, in Proceedings of SPIE 8600, Laser Resonators, Microresonators, and Beam Control XV, 86001S, 2013

  16. G. Aoust, R. Levy, M. Raybaut, A. Godard, J.-M. Melkonian, M. Lefebvre, Theoretical analysis of a resonant quartz-enhanced photoacoustic spectroscopy sensor. Appl. Phys. B 123(2), 63 (2017)

    Article  ADS  Google Scholar 

  17. J.H. Doty, A.A. Kosterev, F.K. Tittel, “First experimental studies of the resonant optothermoacoustic detection technique,” in CLEO/QELS. Laser Sci. Photonic Appl. 2010, 1–2 (2010)

    Google Scholar 

  18. P. Morse, K. Ingard, Theoretical Acoustics (McGraw-Hill, New York, 1968)

    Google Scholar 

  19. J. Kaderli, J. Zweck, A. Safin, S. Minkoff, An analytic solution to the coupled pressure-temperature equations for modeling of photoacoustic trace gas sensors. J. Eng. Math. 103(1), 173–193 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Safin, S.E. Minkoff, J. Zweck, A preconditioned finite element solution of the coupled pressure-temperature equations used to model trace gas sensors. SIAM J. Sci. Comput. 40(5), B1470–B1493 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. B. Brennan, R. C. Kirby, J. Zweck, S. E. Minkoff, High-performance python-based simulations of pressure and temperature waves in a trace gas sensor, in Proceedings of PyHPC 2013: Python for high perfomance and scientific computing, 2013

  22. B. Brennan, R.C. Kirby, Finite element approximation and preconditioners for a coupled thermal–acoustic model. Comput. Math. Appl. 70(10), 2342–2354 (2015)

    Article  MathSciNet  Google Scholar 

  23. A.A. Kosterev, F.K. Tittel, Ammonia detection by use of quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser. Appl. Opt. 43(33), 6213–6217 (2004)

    Article  ADS  Google Scholar 

  24. N. Petra, J. Zweck, S.E. Minkoff, A.A. Kosterev, J.H. Doty III, Modeling and design optimization of a resonant optothermoacoustic trace gas sensor. SIAM J. Appl. Math. 71(1), 309–332 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Safin, Modeling trace gas sensors with the coupled pressure-temperature equations, Ph.D. dissertation, The University of Texas at Dallas, 2018

  26. P. Heyliger, H. Ledbetter, S. Kim, Elastic constants of natural quartz. J. Acoust. Soc. Am. 114(2), 644–650 (2003)

    Article  ADS  Google Scholar 

  27. D.E. Carlson, Linear Thermoelasticity (Springer, Berlin, 1973), pp. 297–345

    Book  Google Scholar 

  28. G.W. Stewart, A Krylov–Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl. 23(3), 601–614 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. V. Hernandez, J.E. Roman, V. Vidal, SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351–362 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. P.R. Amestoy, I.S. Duff, J.-Y. L’Excellent, J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. J. E. Roman, C. Campos, E. Romero, A. Tomas, SLEPc users manual, D. Sistemes Informàtics i Computació, Universitat Politècnica de València, Technical Report DSIC-II/24/02 - Revision 3.9, 2018

  32. A. Miklós, S. Schäfer, P. Hess, Photoacoustic spectroscopy, theory, in Encyclopedia of Spectroscopy and Spectrometry, J. C. Lindon, G. E. Tranter, and J. L. Holmes, Eds. Academic Press, vol. 3, pp. 1815–1822 (2000)

  33. A. Siegman, Lasers (University Science Books, Mill Valley, 1986)

    Google Scholar 

  34. J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. W.C. Chew, W.H. Weedon, A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microw. Opt. Technol. Lett. 7(13), 599–604 (1994)

    Article  ADS  Google Scholar 

  36. G. Aoust, R. Levy, B. Bourgeteau, O. Le Traon, Viscous damping on flexural mechanical resonators. Sens. Actuators A Phys. 230, 126–135 (2015)

    Article  Google Scholar 

  37. I.N. Sneddon, The Linear Theory of Thermoelasticity (Springer, Berlin, 1974)

    MATH  Google Scholar 

  38. W. Bangerth, R. Hartmann, G. Kanschat, deal.II–a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33(4), 24/1–24/27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc users manual, Argonne National Laboratory, Technical Report ANL-95/11 - Revision 3.7, (2016)

  40. S. Balay, W.D. Gropp, L.C. McInnes, B.F. Smith, Efficient management of parallelism in object oriented numerical software libraries, in Modern Software Tools in Scientific Computing, ed. by E. Arge, A.M. Bruaset, H.P. Langtangen (Birkhäuser Press, Boston, 1997), pp. 163–202

    Chapter  MATH  Google Scholar 

  41. C. Geuzaine, J.-F. Remacle, Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. C. Burstedde, L.C. Wilcox, O. Ghattas, p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. 33(3), 1103–1133 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Heroux, R. Bartlett, V. H. R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long, R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring, A. Williams, An overview of trilinos, Sandia National Laboratories, Technical Report SAND2003-2927, 2003

  44. P.R. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet, Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006)

    Article  MathSciNet  Google Scholar 

  45. G. Gautschi, Piezoelectric Sensorics (Springer, Heidelberg, 2002)

    Book  Google Scholar 

  46. S.L. Firebaugh, F. Roignant, E.A. Terray, Modeling the response of photoacoustic gas sensors, in Proceedings of the COMSOL Conference, 2009

  47. A. Kosterev, Y. Bakhirkin, F. Tittel, S. Blaser, Y. Bonetti, L. Hvozdara, Photoacoustic phase shift as a chemically selective spectroscopic parameter. Appl. Phys. B 78(6), 673–676 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Anatoliy Kosterev for sharing his expertise and for providing the experimental data sets. We also thank Noemi Petra for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Safin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Science Foundation under Grant No. DMS-1620293. The numerical simulations were performed on the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safin, A., Zweck, J. & Minkoff, S.E. A one-way coupled model for the vibration of tuning fork-based trace gas sensors driven by a thermoacoustic wave. Appl. Phys. B 126, 29 (2020). https://doi.org/10.1007/s00340-020-7376-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-7376-8

Navigation