Skip to main content
Log in

Implementation of all-optical ripple down counter using the micro-ring resonator structures

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Micro-ring resonator (MRR)-based switching is one of the promising technologies in modern optical signal processing and optical computing. In this paper, we present a scheme of all-optical 2-bit ripple down counter, using the MRR-based all-optical switching activity. The proposed mechanism shows the generation of all-optical two bits ripple down sequences without any involvement of electrical pumping. The optical pumping shows one of the innovative ways to overcome the complexity associated with electrical pumping. The paper includes the detailed mathematical analysis of all-optical switches in the form of a micro-ring resonator structure. We proposed four cascaded micro-ring resonator structures representing all-optical ripple down counters, and numerical simulation is presented with some additional analysis. The proposed design is simple and may be helpful for all-optical signal processing and logical computation.Author names: Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Given name: [Sumit Kumar] Last name [Jindal]. Also, kindly confirm the details in the metadata are correct.It is OKAuthor details: Kindly check and confirm whether the corresponding author and mail ID are correctly identified.ok

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.K. Hunter, I. Andonovic, Approaches to optical internet packet switching. IEEE Commun. Mag. 38(2), 116–122 (2000)

    Article  Google Scholar 

  2. D.J. Blumenthal, B. Olsson, G. Rossi, T.E. Dimmick, L. Rau, M. Masanovic, O. Lavrova, R. Doshi, O. Jerphagnon, J.E. Bowers, V. Kaman, L.A. Coldren, J. Barton, All-optical label swapping networks and technologies. J. Lightw. Technol. 18(12), 2058–2075 (2000)

    Article  ADS  Google Scholar 

  3. J. Tanida, Y. Ichioka, Optical logic array processor using shadowgram. J. Opt. Soc. Am. (A) 73(6), 800–809 (1983)

    Article  ADS  Google Scholar 

  4. M.A. Karim, A.A.S. Awal, Optical Computing: An Introduction (Wiley, New York, 2003).

    Google Scholar 

  5. Z. Li, Z. Chen, B. Li, Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference. Opt. Express 13(3), 1033–1038 (2005)

    Article  ADS  Google Scholar 

  6. J.N. Roy, S. Mukhopadhyay, A minimization scheme of optical space-variant logic operation in a combinational architecture. Opt. Commun. 119, 499–504 (1995)

    Article  ADS  Google Scholar 

  7. J.P. Sokoloff, P.R. Prucnal, I. Glesk, M. Kane, A terahertz optical asymmetric demultiplexer (TOAD). IEEE Photon. Technol. Lett. 5(7), 787–789 (1993)

    Article  ADS  Google Scholar 

  8. C. Schubert, S. Diez, J. Berger, R. Ludwig, U. Feiste, H.G. Weber, G. Toptchiyski, K. Petermann, 160 Gbit/s all-optical demultiplexing using gain transparent ultrafast nonlinear interferometer. IEEE Photon. Technol. Lett 13(5), 474–477 (2001)

    Article  ADS  Google Scholar 

  9. A. Kumar, S. Kumar, S.K. Raghuwanshi, Implementation of full-adder and full-subtractor based on electro-optic effect in Mach-Zehnder interferometers. Opt. Commun. 324, 93–107 (2014)

    Article  ADS  Google Scholar 

  10. A. Kumar, S. Kumar, S.K. Raghuwanshi, Implementation of XOR/XNOR and AND logic gates using Mach-Zehnder interferometers. Optik 125, 5764–5767 (2014)

    Article  ADS  Google Scholar 

  11. S.K. Raghuwanshi, A. Kumar, A. Rahman, Implementation of high speed optical universal logic gates using the electro-optic effect based Mach-Zehnder interferometer. J. Mod. Opt. 62(12), 978–988 (2015)

    Article  ADS  Google Scholar 

  12. S.K. Raghuwanshi, A. Kumar, S. Kumar, Signal router using 3 Mach-Zehnder interferometers. Opt. Eng. (SPIE) 52(3), 035002 (2013)

    Article  ADS  Google Scholar 

  13. S. Kumar, S.K. Raghuwanshi, A. Kumar, Implementation of optical switches by using Mach-Zehnder interferometer. Opt. Eng. (SPIE) 52(9), 097106 (2013)

    Article  ADS  Google Scholar 

  14. A. Kumar, S.K. Raghuwanshi, Implementation of optical gray code converter and even parity checker using the electro-optic effect in the Mach-Zehnder interferometer. Opt. Quantum Electron. 47(7), 2117–2140 (2015). https://doi.org/10.1007/s11082-014-0087-9

    Article  Google Scholar 

  15. S.K. Raghuwanshi, A. Kumar, N.K. Chen, Implementation of Sequential logic circuits using the Mach-Zehnder interferometer based on Electro-optic effect. Opt. Commun. 333, 193–208 (2014)

    Article  ADS  Google Scholar 

  16. R. Clavero, F. Ramos, J.M. Martinez, J. Marti, All-optical flip-flop based on a single SOA-MZI. IEEE Photon. Technol. 17(4), 843–845 (2015)

    Article  ADS  Google Scholar 

  17. M. Zhang, Y. Zhao, I. Wang, J. Wang, P. Ye, Design and analysis of all-optical XOR gate using SOA based Mach-Zehnder. Opt. Commun. 223(4), 301–308 (2004)

    ADS  Google Scholar 

  18. N.J. Doran, D. Wood, Non-linear optical loop mirror. Opt. Lett. 13(1), 56–58 (1988)

    Article  ADS  Google Scholar 

  19. Y. Ishizaka, Y. Kawaguchi, K. Saitosh, M. Koshiba, Design of ultra-compact all-optical XOR and AND logic gates with low power consumption. Optics Communications 284(14), 3528–3533 (2011)

    Article  ADS  Google Scholar 

  20. P.L. Li, D.X. Huang, X.L. Zhang, G.X. Zhu, Ultra high-speed all-optical half adder based on four-wave mixing in semiconductor optical amplifier. Opt. Exp. 14(24), 11839–11847 (2006)

    Article  ADS  Google Scholar 

  21. M. Takenaka, M. Raburn, Y. Nakano, Realization of all-optical flip-flop using directionally coupled bi-stable laser. IEEE Photonics Technol. Lett. 17(5), 968–970 (2005)

    Article  ADS  Google Scholar 

  22. W. Li, S. Ma, H. Hu, N.K. Dutta, All-optical latches using the quantum dot semiconductor optical amplifier. Opt. Commun. 285, 5138–5143 (2012)

    Article  ADS  Google Scholar 

  23. S. Kaur, R.S. Kaler, All-optical SR and D flip-flop employing XGM effect in semiconductor optical amplifiers. Optik 125, 865–869 (2014)

    Article  ADS  Google Scholar 

  24. Y.I. Kim, J.H. Kim, S. Lee, D.H. Woo, S.H. Kim, T.H. Yoon, Broadband all-optical flip-flop based on optical bi-stability in an integrated SOA/DFB—SOA. IEEE Photonics Technol. Lett. 16(2), 398–400 (2004)

    Article  ADS  Google Scholar 

  25. A.G. Coelhor Jr., M.B.C. Costa, A.C. Ferreira, M.G. da-Silva, M.L. Lyra, A.S.B. Sombra, Realization of all-optical logic gates in a triangular triple-core photonic crystal fiber. J. Lightw. Technol. 31(5), 731–739 (2013)

    Article  ADS  Google Scholar 

  26. A. Kumar, S.K. Raghuwanshi, Implementation of some high speed combinational and sequential logic gates using micro-ring. Optik 127, 8751–8759 (2016)

    Article  ADS  Google Scholar 

  27. A. Kumar, Implementation of all-optical NAND logic gate and half-adder using the micro-ring resonator structures. Opt. Quantum Electron. 48, 477–489 (2016)

    Article  Google Scholar 

  28. A. Kumar, Application of micro-ring resonator as high speed optical gray code converter. Opt. Quantum Electron. 48, 460 (2016)

    Article  Google Scholar 

  29. A. Kumar, M. Kumar, S.K. Jindal, S.K. Raghuwanshi, Implementation of all-optical active low/high tri-state buffer logic using the micro-ring resonator structures. Opt. Quantum Electron. 51, 191–208 (2019)

    Article  Google Scholar 

  30. C. Fietz, G. Shvets, Nonlinear polarization conversion using micro-ring resonators. Opt. Lett. 32(12), 1683–1685 (2007)

    Article  ADS  Google Scholar 

  31. P. Nadimi, D.D. Cavigita, E. Di Zitti, Exploiting silicon-on-insulator micro-ring resonator bistability behavior for all-optical set-reset flip-flop. World Acad. Sci. Eng. Technol. 71, 648–652 (2012)

    Google Scholar 

  32. G.K. Bharti, J.K. Rakshit, Design and Performance Analysis of High-Speed Optical Binary Code Converter using Microring Resonator. Fiber Integr. Opt. 103–121 (2018).https://doi.org/10.1080/01468030.2018.1430872 ISSN: 0146–8030 (Print) 1096–4681 (Online) Journal homepage: http://www.tandfonline.com/loi/ufio20

Download references

Acknowledgements

The authors would like to acknowledge the National Institute of Technology, Jamshedpur, for kind support for conducting the present research work. The authors are also very thankful to the Indian Institute of Technology (ISM) Dhanbad for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Behera, B., Kumar, M. et al. Implementation of all-optical ripple down counter using the micro-ring resonator structures. Appl. Phys. B 127, 14 (2021). https://doi.org/10.1007/s00340-020-07555-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07555-9

Navigation