11-μs time-resolved, continuous dual-comb spectroscopy with spectrally filtered mode-locked frequency combs

Abstract

Broadband dual-comb spectroscopy (DCS) based on portable mode-locked fiber frequency combs is a powerful tool for in situ, calibration-free, multi-species spectroscopy. While the acquisition of a single spectrum with mode-locked DCS typically takes microseconds to milliseconds, the applications of these spectrometers have generally been limited to systems and processes with time changes on the order of seconds or minutes due to the need to average many spectra to reach a high signal-to-noise ratio (SNR). Here, we demonstrate high-speed, continuous, fiber mode-locked laser DCS with down to 11 μs time resolution. We achieve this by filtering the comb spectra using portable Fabry–Perot cavities to generate filtered combs with 1 GHz tooth spacing. The 1 GHz spacing increases the DCS acquisition speed and SNR for a given optical bandwidth while retaining a sufficient spacing to resolve absorption features over a wide range of conditions. We measure spectra of methane inside a rapid compression machine throughout the 16 ms compression cycle with 133 cm−1 bandwidth (4000 comb teeth) and 1.4 ms time resolution by spectrally filtering one of the combs. By filtering both combs, we measured a single-shot, 25 cm−1 (750 comb teeth) spectrum of CO around 6330 cm−1 in 11 μs. The technique enables simultaneously high-speed and high-resolution DCS measurements, and can be applied anywhere within the octave-spanning spectrum of robust and portable fiber mode-locked frequency combs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    A. Schliesser, M. Brehm, F. Keilmann, D.W. van der Weide, Opt. Express 13, 9029 (2005)

    ADS  Article  Google Scholar 

  2. 2.

    M.J. Thorpe, D. Balslev-Clausen, M.S. Kirchner, J. Ye, Opt. Express 16, 2387 (2008)

    ADS  Article  Google Scholar 

  3. 3.

    R. Grilli, G. Méjean, S. Kassi, I. Ventrillard, C. Abd-Alrahman, D. Romanini, Environ. Sci. Technol. 46, 10704 (2012)

    ADS  Article  Google Scholar 

  4. 4.

    G.B. Rieker, F.R. Giorgetta, W.C. Swann, J. Kofler, A.M. Zolot, L.C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P.P. Tans, I. Coddington, N.R. Newbury, Optica 1, 290 (2014)

    ADS  Article  Google Scholar 

  5. 5.

    L. Rutkowski, A. Khodabakhsh, A.C. Johansson, D.M. Valiev, L. Lodi, Z. Qu, R. Ghorbani, O. L. Polyansky, Y. Jin, J. Tennyson, F.M. Schmidt, and A. Foltynowicz, in Conf. Lasers Electro-Optics (OSA, Washington, D.C., 2016), p. SW4H.8

  6. 6.

    P.J. Schroeder, R.J. Wright, S. Coburn, B. Sodergren, K.C. Cossel, S. Droste, G.W. Truong, E. Baumann, F.R. Giorgetta, I. Coddington, N.R. Newbury, G.B. Rieker, Proc. Combust. Inst. 36, 4565 (2017)

    Article  Google Scholar 

  7. 7.

    K.C. Cossel, E.M. Waxman, I.A. Finneran, G.A. Blake, J. Ye, N.R. Newbury, J. Opt. Soc. Am. B 34, 104 (2017)

    ADS  Article  Google Scholar 

  8. 8.

    J. Bergevin, T.-H. Wu, J. Yeak, B.E. Brumfield, S.S. Harilal, M.C. Phillips, R.J. Jones, Nat. Commun. 9, 1273 (2018)

    ADS  Article  Google Scholar 

  9. 9.

    A.D. Draper, R.K. Cole, A.S. Makowiecki, J. Mohr, A. Zdanawicz, A. Marchese, N. Hoghooghi, G.B. Rieker, Opt. Express 27, 10814 (2019)

    ADS  Article  Google Scholar 

  10. 10.

    N. Hoghooghi, R.J. Wright, A.S. Makowiecki, E.M. Waxman, W.C. Swann, I. Coddington, G.B. Rieker, Optica 6, 28 (2019)

    ADS  Article  Google Scholar 

  11. 11.

    M.A. Abbas, Q. Pan, J. Mandon, S.M. Cristescu, F.J.M. Harren, A. Khodabakhsh, Sci. Rep. 9, 17247 (2019)

    ADS  Article  Google Scholar 

  12. 12.

    F.C. Roberts, H.J. Lewandowski, B.F. Hobson, and J.H. Lehman, Mol. Phys. 1 (2020)

  13. 13.

    N.H. Pinkowski, Y. Ding, C.L. Strand, R.K. Hanson, R. Horvath, M. Geiser, Meas. Sci. Technol. 31, 055501 (2020)

    ADS  Article  Google Scholar 

  14. 14.

    N. Picqué, T.W. Hänsch, Nature Photon 13, 146–157 (2019)

    ADS  Article  Google Scholar 

  15. 15.

    S. Schiller, Opt. Lett. 27, 766 (2002)

    ADS  Article  Google Scholar 

  16. 16.

    F. Keilmann, C. Gohle, R. Holzwarth, Opt. Lett. 29, 1542 (2004)

    ADS  Article  Google Scholar 

  17. 17.

    I. Coddington, N. Newbury, W. Swann, Optica 3, 414 (2016)

    ADS  Article  Google Scholar 

  18. 18.

    Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, T. Yasui, Sci. Rep. 4, 3816 (2015)

    Article  Google Scholar 

  19. 19.

    S. Okubo, Y.-D. Hsieh, H. Inaba, A. Onae, M. Hashimoto, T. Yasui, Opt. Express 23, 33184 (2015)

    ADS  Article  Google Scholar 

  20. 20.

    A. Foltynowicz, L. Rutkowski, I. Silander, A.C. Johansson, V.S. de Oliveira, O. Axner, G. Soboń, T. Martynkien, P. Mergo, and K. K. Lehmann, Arxiv.Org/Abs/2001.08781 (2020)

  21. 21.

    P. Jacquet, J. Mandon, B. Bernhardt, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, Advances in Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB2

  22. 22.

    S.A. Meek, A. Hipke, G. Guelachvili, T.W. Hänsch, N. Picqué, Opt. Lett. 43, 162–165 (2018)

    ADS  Article  Google Scholar 

  23. 23.

    A. Nishiyama, S. Yoshida, T. Hariki, Y. Nakajima, K. Minoshima, Opt. Express 25, 31730 (2017)

    ADS  Article  Google Scholar 

  24. 24.

    P. Giaccari, J.-D. Deschênes, P. Saucier, J. Genest, P. Tremblay, Opt. Express 16, 4347 (2008)

    ADS  Article  Google Scholar 

  25. 25.

    I. Coddington, W.C. Swann, N.R. Newbury, Phys. Rev. A At. Mol. Opt. Phys. 82, 1 (2010)

    Article  Google Scholar 

  26. 26.

    A.M. Zolot, F.R. Giorgetta, E. Baumann, J.W. Nicholson, W.C. Swann, I. Coddington, N.R. Newbury, Opt. Lett. 37, 638 (2012)

    ADS  Article  Google Scholar 

  27. 27.

    F. Zhu, T. Mohamed, J. Strohaber, A.A. Kolomenskii, T. Udem, H.A. Schuessler, Appl. Phys. Lett. 102, 121116 (2013)

    ADS  Article  Google Scholar 

  28. 28.

    M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, G. Galzerano, Appl. Phys. Lett. 104, 231102 (2014)

    ADS  Article  Google Scholar 

  29. 29.

    T. Ideguchi, A. Poisson, G. Guelachvili, N. Picque, and T. W. Haensch, Nat. Commun. (2014)

  30. 30.

    S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, F.-L. Hong, Appl. Phys. Express 8, 082402 (2015)

    ADS  Article  Google Scholar 

  31. 31.

    G. Truong, E.M. Waxman, K.C. Cossel, E. Baumann, A. Klose, F.R. Giorgetta, W.C. Swann, N.R. Newbury, I. Coddington, Opt. Express 24, 30495 (2016)

    ADS  Article  Google Scholar 

  32. 32.

    A.V. Muraviev, V.O. Smolski, Z.E. Loparo, K.L. Vodopyanov, Nat. Photonics 12, 437 (2018)

    ADS  Article  Google Scholar 

  33. 33.

    D.A. Long, A.J. Fleisher, K.O. Douglass, S.E. Maxwell, K. Bielska, J.T. Hodges, D.F. Plusquellic, Opt. Lett. 39, 2688 (2014)

    ADS  Article  Google Scholar 

  34. 34.

    A.J. Fleisher, D.A. Long, Z.D. Reed, J.T. Hodges, D.F. Plusquellic, Opt. Express 24, 10424 (2016)

    ADS  Article  Google Scholar 

  35. 35.

    G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T.W. Hänsch, N. Picqué, Nat. Photonics 10, 27 (2015)

    ADS  Article  Google Scholar 

  36. 36.

    M. Yan, P. Luo, K. Iwakuni et al., Light Sci Appl 6, e17076 (2017)

    Article  Google Scholar 

  37. 37.

    B. Jerez, P. Martín-Mateos, F. Walla, C. de Dios, P. Acedo, ACS Photonics 5(6), 2348–2353 (2018)

    Article  Google Scholar 

  38. 38.

    M.-G. Suh, Q.-F. Yang, K.Y. Yang, X. Yi, K.J. Vahala, Science 354, 600 (2016)

    ADS  Article  Google Scholar 

  39. 39.

    M. Yu, Y. Okawachi, A.G. Griffith, N. Picqué, M. Lipson, A.L. Gaeta, Nat. Commun. 9, 1869 (2018)

    ADS  Article  Google Scholar 

  40. 40.

    A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A.L. Gaeta, M. Lipson, Sci. Adv. 4, e1701858 (2018)

    ADS  Article  Google Scholar 

  41. 41.

    G. Villares, A. Hugi, S. Blaser, J. Faist, Nat. Commun. 5, 5192 (2014)

    ADS  Article  Google Scholar 

  42. 42.

    L.A. Sterczewski, J. Westberg, M. Bagheri, C. Frez, I. Vurgaftman, C.L. Canedy, W.W. Bewley, C.D. Merritt, C.S. Kim, M. Kim, J.R. Meyer, G. Wysocki, Opt. Lett. 44, 2113 (2019)

    ADS  Article  Google Scholar 

  43. 43.

    K. Beha, D.C. Cole, P. Del’Haye, A. Coillet, S.A. Diddams, S.B. Papp, Optica 4, 406 (2017)

    ADS  Article  Google Scholar 

  44. 44.

    D.R. Carlson, D.D. Hickstein, W. Zhang, A.J. Metcalf, F. Quinlan, S.A. Diddams, S.B. Papp, Science 361, 1358 (2018)

    ADS  Article  Google Scholar 

  45. 45.

    P. Guay, J. Genest, A.J. Fleisher, Opt. Lett. 43, 1407 (2018)

    ADS  Article  Google Scholar 

  46. 46.

    K. Van Gasse, Z. Chen, E. Vicentini, J. Huh, S. Poelman, Z. Wang, G. Roelkens, T. W. Hänsch, B. Kuyken, N. Picqué, arXiv:2006.15113

  47. 47.

    A. Hugi, G. Villares, S. Blaser, H.C. Liu, J. Faist, Nature 492, 229 (2012)

    ADS  Article  Google Scholar 

  48. 48.

    J.L. Klocke, M. Mangold, P. Allmendinger, A. Hugi, M. Geiser, P. Jouy, J. Faist, T. Kottke, Anal. Chem. 90, 10494 (2018)

    Article  Google Scholar 

  49. 49.

    T.M. Fortier, A. Bartels, S.A. Diddams, Opt. Lett. 31, 1011 (2006)

    ADS  Article  Google Scholar 

  50. 50.

    S. Hakobyan, V.J. Wittwer, K. Gürel, A.S. Mayer, S. Schilt, T. Südmeyer, Opt. Lett. 42, 4651 (2017)

    ADS  Article  Google Scholar 

  51. 51.

    T.D. Shoji, W. Xie, K.L. Silverman, A. Feldman, T. Harvey, R.P. Mirin, T.R. Schibli, Optica 3, 995 (2016)

    ADS  Article  Google Scholar 

  52. 52.

    https://www.laserquantum.com/. Accessed May 2020

  53. 53.

    D.M.B. Lesko, A.J. Lind, N. Hoghooghi, A. Kowligy, H. Timmers, P. Sekhar, B. Rudin, F. Emaury, G.B. Rieker, S.A. Diddams, OSA Continuum 3, 2070–2077 (2020)

    Article  Google Scholar 

  54. 54.

    R.A. McCracken, J.M. Charsley, D.T. Reid, Opt. Express 25, 15058–15078 (2017)

    ADS  Article  Google Scholar 

  55. 55.

    T. Steinmetz, T. Wilken, C. Araujo-Hauck et al., Appl. Phys. B 96, 251–256 (2009)

    ADS  Article  Google Scholar 

  56. 56.

    G. Chang, C. Li, D.F. Phillips, A. Szentgyorgyi, R.L. Walsworth, F.X. Kärtner, Opt. Express 20, 24987–25013 (2012)

    ADS  Article  Google Scholar 

  57. 57.

    N.R. Newbury, I. Coddington, W. Swann, Opt. Express 18, 7929 (2010)

    ADS  Article  Google Scholar 

  58. 58.

    S.A. Diddams, M. Kirchner, T. Fortier, D. Braje, A.M. Weiner, L. Hollberg, Opt. Express 17, 3331 (2009)

    ADS  Article  Google Scholar 

  59. 59.

    S.S. Goldsborough, S. Hochgreb, G. Vanhove, M.S. Wooldridge, H.J. Curran, C.-J. Sung, Prog. Energy Combust. Sci. 63, 1 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Scott Diddams for providing the low dispersion mirrors used in the fabrication of the filter cavities. We also thank Anthony Draper for assisting us with the RCM experiment and Jeffrey Mohr, Andrew Zdanowicz and Prof. Anthony Marchese at Engines and Energy Conversion Laboratory at Colorado State University for operating the RCM and our funding agencies Defense Advanced Research Project Agency (W31P4Q-15-1-0011), Air Force Office of Scientific Research (FA9550-17-1-0224), National Science Foundation (CBET 1454496) and NASA Earth and Space Science Fellowship Program (18-PLANET18R).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nazanin Hoghooghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Nathalie Picqué.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hoghooghi, N., Cole, R.K. & Rieker, G.B. 11-μs time-resolved, continuous dual-comb spectroscopy with spectrally filtered mode-locked frequency combs. Appl. Phys. B 127, 17 (2021). https://doi.org/10.1007/s00340-020-07552-y

Download citation