Abstract
Broadband dual-comb spectroscopy (DCS) based on portable mode-locked fiber frequency combs is a powerful tool for in situ, calibration-free, multi-species spectroscopy. While the acquisition of a single spectrum with mode-locked DCS typically takes microseconds to milliseconds, the applications of these spectrometers have generally been limited to systems and processes with time changes on the order of seconds or minutes due to the need to average many spectra to reach a high signal-to-noise ratio (SNR). Here, we demonstrate high-speed, continuous, fiber mode-locked laser DCS with down to 11 μs time resolution. We achieve this by filtering the comb spectra using portable Fabry–Perot cavities to generate filtered combs with 1 GHz tooth spacing. The 1 GHz spacing increases the DCS acquisition speed and SNR for a given optical bandwidth while retaining a sufficient spacing to resolve absorption features over a wide range of conditions. We measure spectra of methane inside a rapid compression machine throughout the 16 ms compression cycle with 133 cm−1 bandwidth (4000 comb teeth) and 1.4 ms time resolution by spectrally filtering one of the combs. By filtering both combs, we measured a single-shot, 25 cm−1 (750 comb teeth) spectrum of CO around 6330 cm−1 in 11 μs. The technique enables simultaneously high-speed and high-resolution DCS measurements, and can be applied anywhere within the octave-spanning spectrum of robust and portable fiber mode-locked frequency combs.
This is a preview of subscription content, access via your institution.






References
- 1.
A. Schliesser, M. Brehm, F. Keilmann, D.W. van der Weide, Opt. Express 13, 9029 (2005)
- 2.
M.J. Thorpe, D. Balslev-Clausen, M.S. Kirchner, J. Ye, Opt. Express 16, 2387 (2008)
- 3.
R. Grilli, G. Méjean, S. Kassi, I. Ventrillard, C. Abd-Alrahman, D. Romanini, Environ. Sci. Technol. 46, 10704 (2012)
- 4.
G.B. Rieker, F.R. Giorgetta, W.C. Swann, J. Kofler, A.M. Zolot, L.C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P.P. Tans, I. Coddington, N.R. Newbury, Optica 1, 290 (2014)
- 5.
L. Rutkowski, A. Khodabakhsh, A.C. Johansson, D.M. Valiev, L. Lodi, Z. Qu, R. Ghorbani, O. L. Polyansky, Y. Jin, J. Tennyson, F.M. Schmidt, and A. Foltynowicz, in Conf. Lasers Electro-Optics (OSA, Washington, D.C., 2016), p. SW4H.8
- 6.
P.J. Schroeder, R.J. Wright, S. Coburn, B. Sodergren, K.C. Cossel, S. Droste, G.W. Truong, E. Baumann, F.R. Giorgetta, I. Coddington, N.R. Newbury, G.B. Rieker, Proc. Combust. Inst. 36, 4565 (2017)
- 7.
K.C. Cossel, E.M. Waxman, I.A. Finneran, G.A. Blake, J. Ye, N.R. Newbury, J. Opt. Soc. Am. B 34, 104 (2017)
- 8.
J. Bergevin, T.-H. Wu, J. Yeak, B.E. Brumfield, S.S. Harilal, M.C. Phillips, R.J. Jones, Nat. Commun. 9, 1273 (2018)
- 9.
A.D. Draper, R.K. Cole, A.S. Makowiecki, J. Mohr, A. Zdanawicz, A. Marchese, N. Hoghooghi, G.B. Rieker, Opt. Express 27, 10814 (2019)
- 10.
N. Hoghooghi, R.J. Wright, A.S. Makowiecki, E.M. Waxman, W.C. Swann, I. Coddington, G.B. Rieker, Optica 6, 28 (2019)
- 11.
M.A. Abbas, Q. Pan, J. Mandon, S.M. Cristescu, F.J.M. Harren, A. Khodabakhsh, Sci. Rep. 9, 17247 (2019)
- 12.
F.C. Roberts, H.J. Lewandowski, B.F. Hobson, and J.H. Lehman, Mol. Phys. 1 (2020)
- 13.
N.H. Pinkowski, Y. Ding, C.L. Strand, R.K. Hanson, R. Horvath, M. Geiser, Meas. Sci. Technol. 31, 055501 (2020)
- 14.
N. Picqué, T.W. Hänsch, Nature Photon 13, 146–157 (2019)
- 15.
S. Schiller, Opt. Lett. 27, 766 (2002)
- 16.
F. Keilmann, C. Gohle, R. Holzwarth, Opt. Lett. 29, 1542 (2004)
- 17.
I. Coddington, N. Newbury, W. Swann, Optica 3, 414 (2016)
- 18.
Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, T. Yasui, Sci. Rep. 4, 3816 (2015)
- 19.
S. Okubo, Y.-D. Hsieh, H. Inaba, A. Onae, M. Hashimoto, T. Yasui, Opt. Express 23, 33184 (2015)
- 20.
A. Foltynowicz, L. Rutkowski, I. Silander, A.C. Johansson, V.S. de Oliveira, O. Axner, G. Soboń, T. Martynkien, P. Mergo, and K. K. Lehmann, Arxiv.Org/Abs/2001.08781 (2020)
- 21.
P. Jacquet, J. Mandon, B. Bernhardt, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, Advances in Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB2
- 22.
S.A. Meek, A. Hipke, G. Guelachvili, T.W. Hänsch, N. Picqué, Opt. Lett. 43, 162–165 (2018)
- 23.
A. Nishiyama, S. Yoshida, T. Hariki, Y. Nakajima, K. Minoshima, Opt. Express 25, 31730 (2017)
- 24.
P. Giaccari, J.-D. Deschênes, P. Saucier, J. Genest, P. Tremblay, Opt. Express 16, 4347 (2008)
- 25.
I. Coddington, W.C. Swann, N.R. Newbury, Phys. Rev. A At. Mol. Opt. Phys. 82, 1 (2010)
- 26.
A.M. Zolot, F.R. Giorgetta, E. Baumann, J.W. Nicholson, W.C. Swann, I. Coddington, N.R. Newbury, Opt. Lett. 37, 638 (2012)
- 27.
F. Zhu, T. Mohamed, J. Strohaber, A.A. Kolomenskii, T. Udem, H.A. Schuessler, Appl. Phys. Lett. 102, 121116 (2013)
- 28.
M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, G. Galzerano, Appl. Phys. Lett. 104, 231102 (2014)
- 29.
T. Ideguchi, A. Poisson, G. Guelachvili, N. Picque, and T. W. Haensch, Nat. Commun. (2014)
- 30.
S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, F.-L. Hong, Appl. Phys. Express 8, 082402 (2015)
- 31.
G. Truong, E.M. Waxman, K.C. Cossel, E. Baumann, A. Klose, F.R. Giorgetta, W.C. Swann, N.R. Newbury, I. Coddington, Opt. Express 24, 30495 (2016)
- 32.
A.V. Muraviev, V.O. Smolski, Z.E. Loparo, K.L. Vodopyanov, Nat. Photonics 12, 437 (2018)
- 33.
D.A. Long, A.J. Fleisher, K.O. Douglass, S.E. Maxwell, K. Bielska, J.T. Hodges, D.F. Plusquellic, Opt. Lett. 39, 2688 (2014)
- 34.
A.J. Fleisher, D.A. Long, Z.D. Reed, J.T. Hodges, D.F. Plusquellic, Opt. Express 24, 10424 (2016)
- 35.
G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T.W. Hänsch, N. Picqué, Nat. Photonics 10, 27 (2015)
- 36.
M. Yan, P. Luo, K. Iwakuni et al., Light Sci Appl 6, e17076 (2017)
- 37.
B. Jerez, P. Martín-Mateos, F. Walla, C. de Dios, P. Acedo, ACS Photonics 5(6), 2348–2353 (2018)
- 38.
M.-G. Suh, Q.-F. Yang, K.Y. Yang, X. Yi, K.J. Vahala, Science 354, 600 (2016)
- 39.
M. Yu, Y. Okawachi, A.G. Griffith, N. Picqué, M. Lipson, A.L. Gaeta, Nat. Commun. 9, 1869 (2018)
- 40.
A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A.L. Gaeta, M. Lipson, Sci. Adv. 4, e1701858 (2018)
- 41.
G. Villares, A. Hugi, S. Blaser, J. Faist, Nat. Commun. 5, 5192 (2014)
- 42.
L.A. Sterczewski, J. Westberg, M. Bagheri, C. Frez, I. Vurgaftman, C.L. Canedy, W.W. Bewley, C.D. Merritt, C.S. Kim, M. Kim, J.R. Meyer, G. Wysocki, Opt. Lett. 44, 2113 (2019)
- 43.
K. Beha, D.C. Cole, P. Del’Haye, A. Coillet, S.A. Diddams, S.B. Papp, Optica 4, 406 (2017)
- 44.
D.R. Carlson, D.D. Hickstein, W. Zhang, A.J. Metcalf, F. Quinlan, S.A. Diddams, S.B. Papp, Science 361, 1358 (2018)
- 45.
P. Guay, J. Genest, A.J. Fleisher, Opt. Lett. 43, 1407 (2018)
- 46.
K. Van Gasse, Z. Chen, E. Vicentini, J. Huh, S. Poelman, Z. Wang, G. Roelkens, T. W. Hänsch, B. Kuyken, N. Picqué, arXiv:2006.15113
- 47.
A. Hugi, G. Villares, S. Blaser, H.C. Liu, J. Faist, Nature 492, 229 (2012)
- 48.
J.L. Klocke, M. Mangold, P. Allmendinger, A. Hugi, M. Geiser, P. Jouy, J. Faist, T. Kottke, Anal. Chem. 90, 10494 (2018)
- 49.
T.M. Fortier, A. Bartels, S.A. Diddams, Opt. Lett. 31, 1011 (2006)
- 50.
S. Hakobyan, V.J. Wittwer, K. Gürel, A.S. Mayer, S. Schilt, T. Südmeyer, Opt. Lett. 42, 4651 (2017)
- 51.
T.D. Shoji, W. Xie, K.L. Silverman, A. Feldman, T. Harvey, R.P. Mirin, T.R. Schibli, Optica 3, 995 (2016)
- 52.
https://www.laserquantum.com/. Accessed May 2020
- 53.
D.M.B. Lesko, A.J. Lind, N. Hoghooghi, A. Kowligy, H. Timmers, P. Sekhar, B. Rudin, F. Emaury, G.B. Rieker, S.A. Diddams, OSA Continuum 3, 2070–2077 (2020)
- 54.
R.A. McCracken, J.M. Charsley, D.T. Reid, Opt. Express 25, 15058–15078 (2017)
- 55.
T. Steinmetz, T. Wilken, C. Araujo-Hauck et al., Appl. Phys. B 96, 251–256 (2009)
- 56.
G. Chang, C. Li, D.F. Phillips, A. Szentgyorgyi, R.L. Walsworth, F.X. Kärtner, Opt. Express 20, 24987–25013 (2012)
- 57.
N.R. Newbury, I. Coddington, W. Swann, Opt. Express 18, 7929 (2010)
- 58.
S.A. Diddams, M. Kirchner, T. Fortier, D. Braje, A.M. Weiner, L. Hollberg, Opt. Express 17, 3331 (2009)
- 59.
S.S. Goldsborough, S. Hochgreb, G. Vanhove, M.S. Wooldridge, H.J. Curran, C.-J. Sung, Prog. Energy Combust. Sci. 63, 1 (2017)
Acknowledgements
The authors would like to thank Dr. Scott Diddams for providing the low dispersion mirrors used in the fabrication of the filter cavities. We also thank Anthony Draper for assisting us with the RCM experiment and Jeffrey Mohr, Andrew Zdanowicz and Prof. Anthony Marchese at Engines and Energy Conversion Laboratory at Colorado State University for operating the RCM and our funding agencies Defense Advanced Research Project Agency (W31P4Q-15-1-0011), Air Force Office of Scientific Research (FA9550-17-1-0224), National Science Foundation (CBET 1454496) and NASA Earth and Space Science Fellowship Program (18-PLANET18R).
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Communicated by Nathalie Picqué.
Rights and permissions
About this article
Cite this article
Hoghooghi, N., Cole, R.K. & Rieker, G.B. 11-μs time-resolved, continuous dual-comb spectroscopy with spectrally filtered mode-locked frequency combs. Appl. Phys. B 127, 17 (2021). https://doi.org/10.1007/s00340-020-07552-y
Received:
Accepted:
Published: