Tunable multi-wavelength random distributed feedback fiber laser based on dual-pass MZI


A tunable half-open cavity multi-wavelength erbium-doped random distributed feedback (RDFB) fiber laser is proposed and experimentally demonstrated. The backward Rayleigh scattering generated by inhomogeneous reflective in the 25-km-long single mode fiber is amplified by the 8-m-long pumped erbium-doped fiber (EDF). The dual-pass Mach–Zehnder interferometer (MZI) acts as the reflection mirror in the half-open cavity. Due to the EDF gain and the half-open structure, the laser threshold is suppressed to 40 mW. The number of laser channel increases linearly with the increasing pump power. Under the pump power of 350 mW, there are seven lasing channels in the spectrum. One arm of the MZI is circled on piezoelectric transducer (PZT) and tunable multi-wavelength lasing operation is realized by adjusting the DC voltage on PZT. When the pump power and the driving voltage attached on PZT are 250 mW and 5 V, the wavelengths of six channels are blue-shifted 0.7 nm. The proposed tunable RDFB fiber laser has the advantages of low cost, simple structure and low threshold, which can be widely used in remote sensing and biomedical imaging.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    D.V. Churkin, S. Sugavanam, I.D. Vatnik, Z.N. Wang, E.V. Podivilov, S.A. Babin, Y.J. Rao, S.K. Turitsyn, Recent advances in fundamentals and applications of random fiber lasers. Adv. Opt. Photon. 7, 516–519 (2015). https://doi.org/10.1364/AOP.7.000516

    Article  Google Scholar 

  2. 2.

    S.K. Turitsyn, S.A. Babin, D.V. Churkin, I.D. Vatnik, M. Nikulin, E.V. Podivilov, Random distributed feedback fibre laser. Phys. Rep. 542, 133–193 (2014). https://doi.org/10.1016/j.physrep.2014.02.011

    ADS  Article  Google Scholar 

  3. 3.

    S.K. Turitsyn, S.A. Babin, A.E. El-Taher, P. Harper, D.V. Churkin, S.I. Kablukov, J.D. Ania-Castañón, V. Karalekas, E.V. Podivilov, Random distributed feedback fibre laser. Nat. Photon. 4, 231–235 (2010). https://doi.org/10.1038/NPHOTON.2010.4

    ADS  Article  Google Scholar 

  4. 4.

    S.A. Babin, A.E. El-Taher, P. Harper, E.V. Podivilov, S.K. Turitsyn, Tunable random fiber laser. Phys. Rev. A 84(2), 021805 (2011). https://doi.org/10.1103/physreva.84.021805

    ADS  Article  Google Scholar 

  5. 5.

    D.V. Churkin, S.A. Babin, A.E. El-Taher, P. Harper, S.I. Kablukov, V. Karalekas, J.D. Ania-Castañón, E.V. Podivilov, S.K. Turitsyn, Raman fiber lasers with a random distributed feedback based on Rayleigh scattering. Phys. Rev. A (2010). https://doi.org/10.1103/physreva.82.033828

    Article  Google Scholar 

  6. 6.

    W.L. Zhang, Y.J. Rao, J.M. Zhu, Z.X. Yang, Z.N. Wang, X.H. Jia, Low threshold 2nd-order random lasing of a fiber laser with a half-open cavity. Opt. Express 20, 14400–14405 (2012). https://doi.org/10.1364/OE.20.014400

    ADS  Article  Google Scholar 

  7. 7.

    L.L. Wang, X.Y. Dong, P. Shum, H.B. Su, Tunable erbium-doped fiber laser based on random distributed feedback. IEEE Photon. J. 6(5), 1–5 (2014). https://doi.org/10.1109/JPHOT.2014.2352623

    Article  Google Scholar 

  8. 8.

    Y.Y. Liu, X.Y. Dong, M. Jiang, X. Yu, P. Shum, Multi-wavelength erbium-doped fiber laser based on random distributed feedback. Appl. Phys. B 122, 240 (2016). https://doi.org/10.1007/s00340-016-6518-5

    ADS  Article  Google Scholar 

  9. 9.

    L.L. Wang, X.Y. Dong, P.P. Shum, H.B. Su, Erbium-doped fiber laser with distributed Rayleigh output mirror. Laser Phys. 24(11), 115101 (2014). https://doi.org/10.1088/1054-660x/24/11/115101

    ADS  Article  Google Scholar 

  10. 10.

    X.L. Wang, D.R. Chen, B. Mao, G.Z. Wu, Random fiber laser based on an artificially controlled backscattering Erbium-Doped fiber. Opt. Fiber Technol. 54, 102125 (2020). https://doi.org/10.1016/j.yofte.2019.102125

    Article  Google Scholar 

  11. 11.

    E.I. Dontsova, S.I. Kablukov, I.D. Vatnik, S.A. Babin, Frequency doubling of Raman fiber lasers with random distributed feedback. Opt. Lett. 41(7), 1439 (2016). https://doi.org/10.1364/ol.41.001439

    ADS  Article  Google Scholar 

  12. 12.

    S. Saleh, N.A. Cholan, A.H. Sulaiman, M.A. Mahdi, Stable multiwavelength erbium-doped random fiber laser. IEEE J. Sel. Top. Quant. 24, 0902106 (2018). https://doi.org/10.1109/JSTQE.2017.2759262

    Article  Google Scholar 

  13. 13.

    A.E. El-Taher, P. Harper, S.A. Babin, D.V. Churkin, E.V. Podivilov, J.D. Ania-Castanon, S.K. Turitsyn, Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation. Opt. Lett. 36(2), 130 (2011). https://doi.org/10.1364/ol.36.000130

    ADS  Article  Google Scholar 

  14. 14.

    L. Zhang, Y.P. Xu, P. Lu, S. Mihailov, L. Chen, X.Y. Bao, Multi-wavelength Brillouin random fiber laser via distributed feedback from a random fiber grating. J. Lightwave Technol. 36(11), 2122–2128 (2018). https://doi.org/10.1109/JLT.2018.2805284

    ADS  Article  Google Scholar 

  15. 15.

    A.E. El-Taher, M. Alcon-Camas, S.A. Babin, P. Harper, J.D. Ania-Castañón, S.K. Turitsyn, Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback. Opt. Lett. 35(7), 1100 (2010). https://doi.org/10.1364/ol.35.001100

    ADS  Article  Google Scholar 

  16. 16.

    S. Sugavanam, M.Z. Zulkifli, D.V. Churkin, Multi-wavelength erbium/Raman gain based random distributed feedback fiber laser. Laser Phys. 26, 015101 (2016). https://doi.org/10.1088/1054-660X/26/1/015101

    ADS  Article  Google Scholar 

  17. 17.

    D. Zhu, X.D. Sun, J.F. Zhao, J.J. Bai, Switchable multi-wavelength random distributed feedback fiber laser. Optik 189, 103–108 (2019). https://doi.org/10.1016/j.ijleo.2019.05.073

    ADS  Article  Google Scholar 

  18. 18.

    M.M. Han, X.L. Li, S.M. Zhang, H.Y. Han, J.M. Liu, Z.J. Yang, Tunable and channel spacing precisely controlled comb filters based on the fused taper technology. Opt. Express 26(1), 265 (2018). https://doi.org/10.1364/oe.26.000265

    ADS  Article  Google Scholar 

  19. 19.

    H.L. An, X.Z. Lin, E.Y.B. Pun, H.D. Liu, Multi-wavelength erbium-doped fiber ring laser with a novel dual-pass Mach–Zehnder comb filter. Opt. Commun. 169(1–6), 159–165 (1999). https://doi.org/10.1016/S0030-4018(99)00422-8

    ADS  Article  Google Scholar 

  20. 20.

    A. Saad, Y. Jiang, Y.W. Liu, Z. Wang, The measurement of the diameter change of a piezoelectric transducer cylinder with the white-light interferometry. Opt. Laser Eng. 56, 169–172 (2014). https://doi.org/10.1016/j.optlaseng.2014.01.005

    ADS  Article  Google Scholar 

  21. 21.

    J.H. Wang, R.S. Chen, J.N. Yao, H. Ming, A.T. Wang, Q.W. Zhan, Random distributed feedback fiber laser generating cylindrical vector beams. Phys. Rev. Appl. 11(4), 044051 (2019). https://doi.org/10.1103/physrevapplied.11.044051

    ADS  Article  Google Scholar 

Download references


This work is supported by the National Youth Foundation of China [Grant number 11704283]; Natural Science Foundation of Tianjin City [Grant numbers 18JCYBJC86300 and 17JCYBJC16600].

Author information



Corresponding author

Correspondence to Zhengrong Tong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Tong, Z., Zhang, W. et al. Tunable multi-wavelength random distributed feedback fiber laser based on dual-pass MZI. Appl. Phys. B 127, 20 (2021). https://doi.org/10.1007/s00340-020-07548-8

Download citation