Skip to main content
Log in

Multiple wavefront manipulation through matrix algebra

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A technique for manipulating wavefronts of propagated objects is proposed, applying matrix algebra to data containing the amplitude and phase information of objects previously propagated. Matrices act as operators, altering the initial conditions of the propagated objects, such as their spatial coordinates, reflection effects, and changes in depth. In this work, we present the use of simple matrices, opening new perspectives on the spatial composition of objects in the final stage of 3D visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.M. Bardsley, SIAM J. Matrix Anal. Appl. 30(1), 67 (2008). https://doi.org/10.1137/06067506X

    Article  MathSciNet  Google Scholar 

  2. G. Coppola, G. Di Caprio, M. Gioffré, R. Puglisi, D. Balduzzi, A. Galli, L. Miccio, M. Paturzo, S. Grilli, A. Finizio, P. Ferraro, Opt. Lett. 35(20), 3390 (2010). https://doi.org/10.1364/OL.35.003390. https://www.osapublishing.org/abstract.cfm?URI=ol-35-20-3390

  3. H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, Y. Park, Curr. Appl. Phys. 15(5), 632 (2015). https://doi.org/10.1016/j.cap.2015.02.015. https://linkinghub.elsevier.com/retrieve/pii/S1567173915000619

  4. S.D. Zhao, Y.S. Wang, C. Zhang, Phys. Rev. Appl. 10(5) (2018). https://doi.org/10.1103/PhysRevApplied.10.054066. ArXiv: 1711.09701

  5. Y. Li, B. Liang, Z.M. Gu, X.Y. Zou, J.C. Cheng, Sci. Rep. 3(1) (2013). https://doi.org/10.1038/srep02546

  6. X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z.H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, L. Chen, Laser Photonics Rev. 13(1), 1800081 (2019). https://doi.org/10.1002/lpor.201800081

    Article  ADS  Google Scholar 

  7. J. Lan, X. Zhang, X. Liu, Y. Li, Sci. Rep. 8(1), 14171 (2018). https://doi.org/10.1038/s41598-018-32547-3

    Article  ADS  Google Scholar 

  8. L. Chen, H.L. Ma, H.Y. Cui, J. Appl. Phys. 124(4), 043101 (2018). https://doi.org/10.1063/1.5039679

    Article  ADS  Google Scholar 

  9. H.X. Xu, G. Hu, Y. Li, L. Han, J. Zhao, Y. Sun, F. Yuan, G.M. Wang, Z.H. Jiang, X. Ling, T.J. Cui, C.W. Qiu, Light Sci. Appl. 8(1), 1 (2019). https://doi.org/10.1038/s41377-018-0113-y

    Article  Google Scholar 

  10. L. Wan, Z. Chen, H. Huang, J. Pu, Appl. Phys. B 122, 7 (2016). https://doi.org/10.1007/s00340-016-6466-0

    Article  ADS  Google Scholar 

  11. M.E. Lucente, J. Electron. Imaging 2(1), 28 (1993). https://doi.org/10.1117/12.133376

    Article  ADS  Google Scholar 

  12. T. Shimobaba, H. Nakayama, N. Masuda, T. Ito, Opt. Express 18(19), 19504 (2010). https://doi.org/10.1364/OE.18.019504. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-18-19-19504

  13. H. Yoshikawa, T. Yamaguchi, R. Kitayama, In: Advances in Imaging (2009), paper DWC4 (Optical Society of America, 2009), p. DWC4. https://doi.org/10.1364/DH.2009.DWC4. https://www.osapublishing.org/abstract.cfm?uri=DH-2009-DWC4

  14. T. Shimobaba, N. Masuda, T. Ito, Opt. Lett. 34(20), 3133 (2009). https://doi.org/10.1364/OL.34.003133. https://www.osapublishing.org/ol/abstract.cfm?uri=ol-34-20-3133

  15. J.P. Waters, J. Opt. Soc. Am. 58(9), 1284 (1968). https://doi.org/10.1364/JOSA.58.001284. https://www.osapublishing.org/josa/abstract.cfm?uri=josa-58-9-1284

  16. J.A. Jordan, P.M. Hirsch, L.B. Lesem, D.L.V. Rooy, Appl. Opt. 9(8), 1883 (1970). https://doi.org/10.1364/AO.9.001883. https://www.osapublishing.org/ao/abstract.cfm?uri=ao-9-8-1883

  17. M.L. Huebschman, B. Munjuluri, H.R. Garner, Opt. Express 11(5), 437 (2003). https://doi.org/10.1364/OE.11.000437. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-11-5-437

  18. W. Southwell, J. Opt. Soc. Am. 70(8), 998 (1980).https://doi.org/10.1364/JOSA.70.000998. https://www.osapublishing.org/abstract.cfm?URI=josa-70-8-998

  19. M.B. Roopashree, A. Vyas, B.R. Prasad, In: Instrumentation and Methods for Astrophysics (Chandigarh, India, 2009), p. 4

  20. R.J. Collier, C.B. Burckhardt, L.H. Lin, Optical holography (Elsevier, 1971). https://doi.org/10.1016/B978-0-12-181050-4.X5001-X. https://linkinghub.elsevier.com/retrieve/pii/B9780121810504X5001X

  21. P. Hariharan, Optical Holography by P. Hariharan, 2nd edn. (University Press, Cambridge, 1996). https://doi.org/10.1017/CBO9781139174039

    Book  Google Scholar 

  22. X. Wang, Q. Xu, E. Liu, Opt. Laser Tech. 32, 177 (2000). https://doi.org/10.1016/S0030-3992(00)00037-2

    Article  ADS  Google Scholar 

  23. X. Zeng, R.J. McGough, J. Acoust. Soc. Am. 123(1), 68 (2000). https://doi.org/10.1121/1.2812579

    Article  ADS  Google Scholar 

  24. X. Zhang, Matrix analysis and applications (Cambridge University Press, 2017). OCLC: 1016159640

  25. P.N. Klein, Coding the matrix: linear algebra through applications to computer science, 1st edn. (Newtonian Press, Newton, Mass., 2013). OCLC: 861234337

  26. M.E. Mortenson, M.E. Mortenson, Mathematics for computer graphics applications, 2nd edn. (Industrial Press, New York, 1999)

    MATH  Google Scholar 

  27. J.M.R.S. Tavares (ed.), Computational vision and medical image processing: recent trends. No. Vol. 19 in Computational methods in applied sciences (Springer, Dordrecht, 2011). OCLC: 837765136

  28. G. Latouche, P. Taylor (eds.), Matrix-analytic methods: theory and applications: proceedings of the fourth international conference: Adelaide, Australia, 14–16 July 2002 (World Scientific, New Jersey, 2002). OCLC: ocm50566356

  29. V. Pop, O. Furdui, D.S. Bernstein, Square matrices of order 2 theory, applications, and problems (Springer International Publishing, 2017). http://www.springerlink.com/content/978-3-319-54939-2. OCLC: 985982303

  30. J.L. Juárez-Pérez, A. Olivares-Pérez, L.R. Berriel-Valdos, Appl. Opt. 36(29), 7437 (1997). https://doi.org/10.1364/AO.36.007437

    Article  ADS  Google Scholar 

  31. J.L. Juarez-Perez, A. Olivares-Perez, M.R. Gomez-Colin, B. Pinto-Iguanero, M. Perez-Cortes, M. Ortiz-Gutierrez, in Practical holography XVI and holographic materials VIII, vol. 4659 (International Society for Optics and Photonics, 2002), vol. 4659, pp. 258–265. https://doi.org/10.1117/12.469276

  32. K. Matsushima, M. Takai, Appl. Opt. 39(35), 6587 (2000). https://doi.org/10.1364/AO.39.006587

    Article  ADS  Google Scholar 

  33. P. Zhou, Y. Bi, M. Sun, H. Wang, F. Li, Y. Qi, Appl. Opt. 53(27), G209 (2014). https://doi.org/10.1364/AO.53.00G209.https://www.osapublishing.org/ao/abstract.cfm?uri=ao-53-27-G209

  34. C.f. Ying, Opt. Eng. 50(5), 055802 (2011). https://doi.org/10.1117/1.3577704. http://opticalengineering.spiedigitallibrary.org/article.aspx?doi=10.1117/1.3577704

  35. L.B. Lesem, P.M. Hirsch, J.A. Jordan, IBM J. Res. Dev. 13(2), 150 (1969). https://doi.org/10.1147/rd.132.0150.http://ieeexplore.ieee.org/document/5391806/

  36. C. Wagner, S. Seebacher, W. Osten, W. Jüptner, Appl. Opt. 38(22), 4812 (1999). https://doi.org/10.1364/AO.38.004812. https://www.osapublishing.org/ao/abstract.cfm?uri=ao-38-22-4812

  37. T. Meeser, C.v. Kopylow, C. Falldorf, In: 2010 3DTV-Conference: the true vision—capture, transmission and display of 3D video (2010), pp. 1–4. https://doi.org/10.1109/3DTV.2010.5506338

  38. G.X. Ritter, J.N. Wilson, J.L. Davidson, Computer vision, graphics, and image processing 49(3), 297 (1990). https://doi.org/10.1016/0734-189X(90)90106-6. http://www.sciencedirect.com/science/article/pii/0734189X90901066

  39. P.W. Hawkes, J. Math. Imaging Vis. 2(1), 83 (1992). https://doi.org/10.1007/BF00123882

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Villa-Hernández.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 2976 KB)

Supplementary material 2 (mp4 2791 KB)

Appendix

Appendix

1.1 A original holograms

In this section we present some of the complete holograms used in the creation of the reconstructed objects throughout the document. They are presented unaltered and at full resolution.

Fig. 15
figure 15

Original holograms; a for three objects and b for the three dimensional spiral

Figure 15a shows the complete hologram that was generated with the wavefront from Fig. (8c). A part of it was amplified for better visualization in Fig. 10. On the contrary, Fig. 15b shows the hologram used for reconstruction in Fig. 14a.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villa-Hernández, J.M., Olivares-Pérez, A., Herrán-Cuspinera, R.M. et al. Multiple wavefront manipulation through matrix algebra. Appl. Phys. B 127, 15 (2021). https://doi.org/10.1007/s00340-020-07541-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07541-1

Navigation