Skip to main content
Log in

Study of modal properties in graphene-coated nanowires integrated with substrates

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, we show that graphene-coated nanowire integrated with a semi-elliptical dielectric substrate could enable excellent subwavelength transmission performance in the mid-infrared range. The fundamental graphene plasmon mode behaviors on the thickness of silica layer, ratio of long- to short-axis of the ellipse, nanowire radius, and chemical potential of graphene are revealed in detail. By improving the geometric parameters and the surface conductivity of graphene, results show that deep-subwavelength modal field size and long propagation could be achieved. Our findings may promote the applications of graphene-coated nanowires in tunable nanoscale photonic devices and sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data are available on request from the authors.

References

  1. R.F. Oulton, V.J. Sorger, D.A. Genov, D.F.P. Pile, X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2(8), 496–500 (2008)

    Google Scholar 

  2. N.T. Huong, N.D. Vy, M.T. Trinh, C.M. Hoang, Tuning SPP propagation length of hybrid plasmonic waveguide by manipulating evanescent field. Opt. Communications 462, 125335 (2020)

    Google Scholar 

  3. Y. Song, J. Wang, Q. Li, M. Yan, M. Qiu, Broadband coupler between silicon waveguide and hybrid plasmonic waveguide. Opt. Express 18(12), 13173–13179 (2010)

    ADS  Google Scholar 

  4. N.T. Huong, C.M. Hoang, Modal characteristics and the tunability of horizontal hybrid gap plasmonic waveguide. Appl. Phys. B 126, 27 (2020)

    ADS  Google Scholar 

  5. J. Zhu, Z. Xu, W. Xu, D. Fu, D. Wei, Dye gain gold NW array of surface plasmon polariton waveguide. Results Phys. 7, 895–898 (2017)

    ADS  Google Scholar 

  6. X. Xiong, C.L. Zou, X.F. Ren, A.P. Liu, Y.X. Ye, F.W. Sun, G.C. Guo, Silver nanowires for photonics applications. Laser Photonics Rev. 7(6), 901–919 (2013)

    ADS  Google Scholar 

  7. Y. Chen, Y. Xu, J. Cao, Fano resonance sensing characteristics of MIM waveguide coupled square convex ring resonator with metallic baffle. Results Phys. 14, 102420 (2019)

    Google Scholar 

  8. J.A. Dionne, L.A. Sweatlock, M.T. Sheldon, A.P. Alivisatos, H.A. Atwater, Silicon-based plasmonics for on-chip photonics. IEEE J. Sel. Top. Quantum Electron. 16(1), 295–306 (2010)

    ADS  Google Scholar 

  9. A.G. Ardakani, K. Moradi, Strong circular dichroism in a non-chiral metasurface based on an array of metallic V-shaped nanostructures. Eur. Phys. J. Plus 133, 73 (2018)

    Google Scholar 

  10. N.T. Huong, N.V. Chinh, C.M. Hoang, Wedge surface plasmon polariton waveguides based on wet-bulk micromachining. Photonics 6, 21 (2019)

    Google Scholar 

  11. Y. Bian, Z. Zheng, X. Zhao, J. Zhu, T. Zhou, Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration. Opt. Express 17(23), 21320–21325 (2009)

    ADS  Google Scholar 

  12. Z. Zhang, J. Wang, Long-range hybrid wedge plasmonic waveguide. Sci. Rep. 4(1), 6870 (2014)

    MathSciNet  ADS  Google Scholar 

  13. D. Dai, S. He, A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt. Express 17(19), 16646–16653 (2009)

    ADS  Google Scholar 

  14. Y. Bian, Z. Zheng, Y. Liu, J. Liu, J. Zhu, T. Zhou, Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement. Opt. Express 19(23), 22417–22422 (2011)

    ADS  Google Scholar 

  15. M.Z. Alam, J.S. Aitchison, M. Mojahedi, A marriage of convenience: hybridization of surface plasmon and dielectric waveguide modes. Laser Photonics Rev. 8(3), 394–408 (2014)

    ADS  Google Scholar 

  16. D. Teng, Q. Cao, K. Wang, An extension of the generalized nonlocal theory for the mode analysis of plasmonic waveguides at telecommunication frequency. J. Opt. 19(5), 055003 (2017)

    ADS  Google Scholar 

  17. D. Teng, Q. Cao, H. Gao, K. Wang, M. Zhu, Three-wave approximation for the modal field inside high-index dielectric rods of hybrid plasmonic waveguides. J. Mod. Opt. 63(15), 1451–1456 (2016)

    ADS  Google Scholar 

  18. J. Tian, M. Sun, R. Yang, L. Song, Coaxial multi-layer hybrid plasmonic waveguide at subwavelength scale. Eur. Phys. J. D 68(10), 285 (2014)

    ADS  Google Scholar 

  19. A.N. Grigorenko, M. Polini, K.S. Novoselov, Graphene plasmonics. Nat. Photonics 6(11), 749–758 (2012)

    ADS  Google Scholar 

  20. A. Vakil, N. Engheta, Transformation optics using graphene. Science 332(6035), 1291–1294 (2011)

    ADS  Google Scholar 

  21. D. Teng, K. Wang, Q. Huan, W. Chen, Z. Li, High-performance light transmission based on graphene plasmonic waveguides. J. Mater. Chem. C 8(20), 6832–6838 (2020)

    Google Scholar 

  22. H. Vahed, S.S. Ahmadi, Graphene-based plasmonic electro-optic modulator with sub-wavelength thickness and improved modulation depth. Appl. Phys. B 123(11), 265 (2017)

    ADS  Google Scholar 

  23. J. Lao, J. Tao, Q.J. Wang, X.G. Huang, Tunable graphene-based plasmonic waveguides: nano modulators and nano attenuators. Laser Photonics Rev. 8(4), 569–574 (2014)

    ADS  Google Scholar 

  24. H. Li, J. Niu, G. Wang, Dual-band, polarization-insensitive metamaterial perfect absorber based on monolayer graphene in the mid-infrared range. Results Phys. 13, 102313 (2019)

    Google Scholar 

  25. H. Zhuang, F. Kong, K. Li, S. Sheng, Plasmonic bandpass filter based on graphene nanoribbon. Appl. Optics 54(10), 2558–2564 (2015)

    ADS  Google Scholar 

  26. M. Janfaza, M.A. Mansouri-Birjandi, A. Tavousi, Tunable plasmonic band-pass filter based on Fabry-Perot graphene nanoribbons. Appl. Phys. B 123(10), 262 (2017)

    Google Scholar 

  27. G.W. Hanson, Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide. J. Appl. Phys. 104(8), 084314 (2008)

    ADS  Google Scholar 

  28. T.M. Wijesinghe, M. Premaratne, G.P. Agrawal, Low-loss dielectric-loaded graphene surface plasmon polariton waveguide based biochemical sensor. J. Appl. Phys. 117(21), 213105 (2015)

    ADS  Google Scholar 

  29. P. Wan, C. Yang, Z. Liu, Channel hybrid plasmonic modes in dielectric-loaded graphene groove waveguides. Opt. Commun. 420, 72–77 (2018)

    ADS  Google Scholar 

  30. L. Ye, K. Sui, Y. Liu, M. Zhang, Q.H. Liu, Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation. Opt. Express 26(12), 15935–15947 (2018)

    ADS  Google Scholar 

  31. B. Wang, S. Blaize, S. Kim, H. Yang, R. Salas-Montiel, In-plane electric field confinement engineering in graphene-based hybrid plasmonic waveguides. Appl. Optics 58(27), 7503–7509 (2019)

    ADS  Google Scholar 

  32. X. Chen, Y. Wang, Y. Xiang, G. Jiang, L. Wang, Q. Bao, H. Zhang, Y. Liu, S. Wen, D. Fan, A broadband optical modulator based on a graphene hybrid plasmonic waveguide. J. Lightwave Technol. 34(21), 4948–4953 (2016)

    ADS  Google Scholar 

  33. J. Guo, J. Li, C. Liu, Y. Yin, W. Wang, Z. Ni, Z. Fu, H. Yu, Y. Xu, Y. Shi, Y. Ma, S. Gao, L. Tong, D. Dai, High-performance silicon−graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm. Light Sci. Appl. 9, 29 (2020)

    ADS  Google Scholar 

  34. X. Luo, Z.Q. Cheng, X. Zhai, Z.M. Liu, S.Q. Li, J.P. Liu, L.L. Wang, Q. Lin, Y.H. Zhou, A tunable dual-band and polarization-insensitive coherent perfect absorber based on double-layers graphene hybrid waveguide. Nanoscale Res. Lett. 14, 337 (2019)

    ADS  Google Scholar 

  35. Y. Gao, G. Ren, B. Zhu, H. Liu, Y. Lian, S. Jian, Analytical model for plasmon modes in graphene-coated nanowire. Opt. Express 22(20), 24322–24331 (2014)

    ADS  Google Scholar 

  36. B. Zhu, G. Ren, Y. Gao, Y. Yang, Y. Lian, S. Jian, Graphene-coated tapered nanowire infrared probe: a comparison with metal-coated probes. Opt. Express 22(20), 24096–24103 (2014)

    ADS  Google Scholar 

  37. Y. Huang, L. Zhang, H. Yin, M. Zhang, H. Su, I.L. Li, H. Liang, Graphene-coated nanowires with a drop-shaped cross section for 10 nm confinement and 1 mm propagation. Opt. Lett. 42(11), 2078–2081 (2017)

    ADS  Google Scholar 

  38. D. Teng, K. Wang, Z. Li, Y. Zhao, G. Zhao, H. Li, H. Wang, Graphene-coated elliptical nanowires for low loss subwavelength terahertz transmission. Appl. Sci. 9(11), 2351 (2019)

    Google Scholar 

  39. Z. Wu, T. Ning, J. Li, M. Zhang, H. Su, I.L. Li, H. Liang, Tunable photonic-like modes in graphene-coated nanowires. Opt. Express 27(24), 35238–35244 (2019)

    ADS  Google Scholar 

  40. J.P. Liu, X. Zhai, L.L. Wang, H.J. Li, F. Xie, Q. Lin, S.X. Xia, Analysis of mid-infrared surface plasmon modes in a graphene-based cylindrical hybrid waveguide. Plasmonics 11(3), 703–711 (2016)

    Google Scholar 

  41. J.P. Liu, X. Zhai, F. Xie, L.L. Wang, S.X. Xia, H.J. Li, X. Luo, X.J. Shang, Analytical model of mid-infrared surface plasmon modes in a cylindrical long-range waveguide with double-layer graphene. J. Lightwave Technol. 35(10), 1971–1979 (2016)

    ADS  Google Scholar 

  42. X. Cheng, W.R. Xue, Z.Z. Wei, H.Y. Dong, C.Y. Li, Mode analysis of a confocal elliptical dielectric nanowire coated with double-layer graphene. Opt. Commun. 452, 467–475 (2019)

    ADS  Google Scholar 

  43. B. Zhu, G. Ren, Y. Yang, Y. Gao, B. Wu, Y. Lian, Y. Lian, J. Wang, S. Jian, Field enhancement and gradient force in the graphene-coated nanowire pairs. Plasmonics 10, 839–845 (2015)

    Google Scholar 

  44. Y.L. Peng, W.R. Xue, Z.Z. Wei, C.Y. Li, Mode properties analysis of graphene-coated asymmetric parallel dielectric nanowire waveguides. Acta Physica Sinica 67(3), 038102 (2018)

    Google Scholar 

  45. D. Teng, K. Wang, Z. Li, Y. Zhao, Graphene-coated nanowire dimers for deep subwavelength waveguiding in mid-infrared range. Opt. Express 27(9), 12458–12469 (2019)

    ADS  Google Scholar 

  46. D. Wu, J. Tian, Study on the plasmonic characteristics of bow-tie type graphene-coated nanowire pair. Optik 156, 689–695 (2018)

    ADS  Google Scholar 

  47. D. Wu, J. Tian, R. Yang, Study of mode performances of graphene-coated nanowire integrated with triangle wedge substrate. J. Nonlinear Opt. Phys. Mater. 27(02), 1850013 (2018)

    ADS  Google Scholar 

  48. M. Hajati, Y. Hajati, Deep subwavelength confinement of mid-infrared plasmon modes by coupling graphene-coated nanowire with a dielectric substrate. Plasmonics 13, 403–412 (2018)

    Google Scholar 

  49. M. Hajati, Y. Hajati, High-performance and low-loss plasmon waveguiding in graphene-coated nanowire with substrate. J. Opt. Soc. Am. B 33(12), 2560–2565 (2016)

    ADS  Google Scholar 

  50. M. Sun, J. Tian, X. Lan, Z. He, J. Liu, Transmission properties of two vertically coupled double-graphene-coated nanowires integrated with substrate. Optik 185, 242–247 (2019)

    ADS  Google Scholar 

  51. D. Teng, K. Wang, Z. Li, Graphene-coated nanowire waveguides and their applications. Nanomaterials 10(2), 229 (2020)

    Google Scholar 

  52. Y. Francescato, V. Giannini, S.A. Maier, Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon. New J. Phys. 15(6), 063020 (2013)

    ADS  Google Scholar 

  53. Q. Zhang, X. Li, M.M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M.D. Turner, S. Fan, Q. Bao, M. Gu, Graphene surface plasmons at the near-infrared optical regime. Sci. Rep. 4, 6559 (2015)

    Google Scholar 

  54. Y. Gao, I.V. Shadrivov, Nonlinear coupling in graphene-coated nanowires. Sci. Rep. 6, 38924 (2016)

    ADS  Google Scholar 

  55. R. Buckley, P. Berini, Figures of merit for 2D surface plasmon waveguides and application to metal stripes. Opt. Express 15(19), 12174–12182 (2007)

    ADS  Google Scholar 

  56. D.K. Efetov, P. Kim, Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 105, 256805 (2010)

    ADS  Google Scholar 

  57. T. Cao, L. Tian, H. Liang, K.-R. Qin, Reconfigurable, graphene-coated, chalcogenide nanowires with a sub-10-nm enantioselective sorting capability. Microsyst. Nanoeng. 4, 7 (2018)

    ADS  Google Scholar 

  58. B. Chen, C. Meng, Z. Yang, W. Li, S. Lin, T. Gu, X. Guo, D. Wang, S. Yu, C.W. Wong, L. Tong, Graphene coated ZnO nanowire optical waveguides. Opt. Express 22(20), 24276–24285 (2014)

    ADS  Google Scholar 

  59. D.X. Dai, L. Liu, L. Wosinski, S. He, Design and fabrication of ultra-small overlapped AWG demultiplexer based on -Si nanowire waveguides. Electron. Lett. 42(7), 400–402 (2006)

    ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the China Postdoctoral Science Foundation (2020M671247), Key Scientific Research Project of Henan College (21A140029), Open Research Fund of Zhengzhou Normal University, Scientific Research Starting Foundation of Zhengzhou Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da Teng or Kai Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, D., Guo, J., Yang, Y. et al. Study of modal properties in graphene-coated nanowires integrated with substrates. Appl. Phys. B 126, 173 (2020). https://doi.org/10.1007/s00340-020-07525-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07525-1

Navigation