Skip to main content
Log in

VOC Gas Sensing Via Microelectronics-Based Absorption Spectroscopy at 220–330 GHz

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Gas sensing by THz wave absorption spectroscopy is demonstrated for several volatile organic compounds (VOCs) using a broadband electronics-based THz wave spectrometer. Spectral absorption is characterized in the frequency range from 220 to 330 GHz for seven VOCs and water vapor in a gas cell at room temperature and pressures of 0.5–10 Torr. Amplitude-modulation is applied to the interrogating radiation, and lock-in detection is used to acquire the transmitted frequency-dependent radiation intensity. For methanol, ethanol, n-propanol, formic acid, formaldehyde, acetaldehyde, acetone, and water vapor, measured transition frequencies agree with literature databases, where available. The present work demonstrates the potential for an all-electronic THz gas sensor for conditions where pressure broadening and line blending occur, as would be found in typical industrial, environmental, and biological gas sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Svanberg, Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications (Springer Science & Business Media, Berlin, 2012)

    Google Scholar 

  2. H.H. Mantsch, D. Naumann, J. Mol. Struct. 964, 1 (2010)

    ADS  Google Scholar 

  3. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, B. Jänker, Opt. Lasers Eng. 37, 101 (2002)

    Google Scholar 

  4. A.A. Kosterev, F.K. Tittel, IEEE J. Quantum Electron. 38, 582 (2002)

    ADS  Google Scholar 

  5. C. S. Goldenstein, R. Mitchell Spearrin, J. B. Jeffries, and R. K. Hanson, Progress Energy Comb. Sci. 60, 132 (2017)

  6. M. Naftaly, N. Vieweg, and A. Deninger, Sensors 19, (2019)

  7. M. W. Mansha, K. Wu, T. E. Rice, M. A. Oehlschlaeger, M. M. Hella, and I. Wilke, IEEE. Sensors (2019)

  8. R. Friedrich and A. Obermeier, Reactive Hydrocarbons in the Atmosphere 1 (1999)

  9. R. G. Derwent, Issues in Environmental Science and Technology 1 (n.d.)

  10. B.C. McDonald, J.A. de Gouw, J.B. Gilman, S.H. Jathar, A. Akherati, C.D. Cappa, J.L. Jimenez, J. Lee-Taylor, P.L. Hayes, S.A. McKeen, Y.Y. Cui, S.-W. Kim, D.R. Gentner, G. Isaacman-VanWertz, A.H. Goldstein, R.A. Harley, G.J. Frost, J.M. Roberts, T.B. Ryerson, M. Trainer, Science 359, 760 (2018)

    ADS  Google Scholar 

  11. T.P.J. Blaikie, J.A. Edge, G. Hancock, D. Lunn, C. Megson, R. Peverall, G. Richmond, G.A.D. Ritchie, D. Taylor, J. Breath Res. 8, 046010 (2014)

    ADS  Google Scholar 

  12. Y.-D. Hsieh, S. Nakamura, D.G. Abdelsalam, T. Minamikawa, Y. Mizutani, H. Yamamoto, T. Iwata, F. Hindle, T. Yasui, Sci. Rep. 6, 28114 (2016)

    ADS  Google Scholar 

  13. M. Exter, C. Fattinger, D. Grischkowsky, Opt. Lett. 14, 1128 (1989)

    ADS  Google Scholar 

  14. R.M. Smith, M.A. Arnold, Anal. Chem. 87, 10679 (2015)

    Google Scholar 

  15. D.T. Petkie, T.M. Goyette, R.P.A. Bettens, S.P. Belov, S. Albert, P. Helminger, F.C. De Lucia, Rev. Sci. Instrum. 68, 1675 (1997)

    ADS  Google Scholar 

  16. S. Albert, D.T. Petkie, R.P. Bettens, S.P. Belov, F.C. De Lucia, Anal. Chem. 70, 719A (1998)

    Google Scholar 

  17. F. C. De Lucia and D. T. Petkie, Terahertz for Military and Security Applications III (2005)

  18. P. Kilcullen, I.D. Hartley, E.T. Jensen, M. Reid, J. Infrared Millimeter Terahertz Waves 36, 380 (2015)

    Google Scholar 

  19. C. Wang, R. Han, IEEE J. Solid-State Circuits 52, 3361 (2017)

    ADS  Google Scholar 

  20. R. Han, Z. Hu, C. Wang, J. Holloway, X. Yi, M. Kim, J. Mawdsley, IEEE Microwave Mag. 20, 80 (2019)

    Google Scholar 

  21. P. Chevalier, T. F. Meister, B. Heinemann, S. Van Huylenbroeck, W. Liebl, A. Fox, A. Sibaja-Hernandez, and A. Chantre, 2011 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (2011)

  22. D. Wang, K. Schmalz, M.H. Eissa, J. Borngraber, M. Kucharski, M. Elkhouly, M. Ko, H.J. Ng, D. Kissinger, IEEE Trans. Microw. Theory Tech. 66, 4232 (2018)

    ADS  Google Scholar 

  23. K. Schmalz, N. Rothbart, M.H. Eissa, J. Borngräber, D. Kissinger, H.-W. Hübers, AIP Adv. 9, 015213 (2019)

    ADS  Google Scholar 

  24. C.F. Neese, I.R. Medvedev, G.M. Plummer, A.J. Frank, C.D. Ball, F.C. De Lucia, IEEE Sens. J. 12, 2565 (2012)

    ADS  Google Scholar 

  25. F. Hindle, L. Kuuliala, M. Mouelhi, A. Cuisset, C. Bray, M. Vanwolleghem, F. Devlieghere, G. Mouret, R. Bocquet, Analyst 143, 5536 (2018)

    ADS  Google Scholar 

  26. K. Schmalz, J. Borngraber, W. Debski, M. Elkhouly, R. Wang, P.F.-X. Neumaier, D. Kissinger, H.-W. Hubers, IEEE Trans. Terahertz Sci. Technol. 6, 318 (2016)

    ADS  Google Scholar 

  27. K. Schmalz, N. Rothbart, P.F.-X. Neumaier, J. Borngraber, H.-W. Hubers, D. Kissinger, IEEE Trans. Microw. Theory Tech. 65, 1807 (2017)

    ADS  Google Scholar 

  28. N. Rothbart, K. Schmalz, and H.-W. Hubers, 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (2019)

  29. A. Tekawade, T. E. Rice, M. A. Oehlschlaeger, M. W. Mansha, K. Wu, M. M. Hella, and I. Wilke, Appl. Phys. B 124, (2018)

  30. R. Han, E. Afshari, IEEE J. Solid-State Circuits 48, 3090 (2013)

    ADS  Google Scholar 

  31. K. Wu, S. Muralidharan, M.M. Hella, IEEE Trans. Electron Devices 65, 788 (2018)

    ADS  Google Scholar 

  32. L. Yang, T. Guo, X. Zhang, S. Cao, and X. Ding, Rev. Analyt. Chem. 37, (2018)

  33. R.M. Lees, F.J. Lovas, W.H. Kirchhoff, D.R. Johnson, J. Phys. Chem. Ref. Data 2, 205 (1973)

    ADS  Google Scholar 

  34. F.C. De Lucia, E. Herbst, T. Anderson, P. Helminger, J. Mol. Spectrosc. 134, 395 (1989)

    ADS  Google Scholar 

  35. L.-H. Xu, F.J. Lovas, J. Phys. Chem. Ref. Data 26, 17 (1997)

    ADS  Google Scholar 

  36. F.J. Lovas, J. Phys. Chem. Ref. Data 11, 251 (1982)

    ADS  Google Scholar 

  37. Z. Kisiel, O. Dorosh, A. Maeda, I.R. Medvedev, F.C. De Lucia, E. Herbst, B.J. Drouin, J.C. Pearson, S.T. Shipman, Phys. Chem. Chem. Phys. 12, 8329 (2010)

    Google Scholar 

  38. I. R. Medvedev, R. Schueler, J. Thomas, O. Kenneth, H.-J. Nam, N. Sharma, Q. Zhong, D. J. Lary, and P. Raskin, 2016 41st International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (2016)

  39. A.M. Fosnight, B.L. Moran, I.R. Medvedev, Appl. Phys. Lett. 103, 133703 (2013)

    ADS  Google Scholar 

  40. H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, H.S.P. Müller, J. Quant. Spectrosc. Radiat. Transfer 60, 883 (1998)

    ADS  Google Scholar 

  41. I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tan, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, B.J. Drouin, J.M. Flaud, R.R. Gamache, J.T. Hodges, D. Jacquemart, V.I. Perevalov, A. Perrin, K.P. Shine, M.A.H. Smith, J. Tennyson, G.C. Toon, H. Tran, V.G. Tyuterev, A. Barbe, A.G. Császár, V.M. Devi, T. Furtenbacher, J.J. Harrison, J.M. Hartmann, A. Jolly, T.J. Johnson, T. Karman, I. Kleiner, A.A. Kyuberis, J. Loos, O.M. Lyulin, S.T. Massie, S.N. Mikhailenko, N. Moazzen-Ahmadi, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, O.L. Polyansky, M. Rey, M. Rotger, S.W. Sharpe, K. Sung, E. Starikova, S.A. Tashkun, J.V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, E.J. Zak, J. Quant. Spectrosc. Radiat. Transf. 203, 3 (2017)

    ADS  Google Scholar 

  42. M. Winnewisser, B.P. Winnewisser, M. Stein, M. Birk, G. Wagner, G. Winnewisser, K.M.T. Yamada, S.P. Belov, O.I. Baskakov, J. Mol. Spectrosc. 216, 259 (2002)

    ADS  Google Scholar 

  43. O.I. Baskakov, B.P. Winnewisser, I.R. Medvedev, F.C. De Lucia, J. Mol. Struct. 795, 42 (2006)

    ADS  Google Scholar 

  44. J. V. Auwera and J. Vander Auwera, J. Molec. Spectrosc. 155, 136 (1992)

  45. D.R. Johnson, F.J. Lovas, W.H. Kirchhoff, J. Phys. Chem. Ref. Data 1, 1011 (1972)

    ADS  Google Scholar 

  46. I. Kleiner, F.J. Lovas, M. Godefroid, J. Phys. Chem. Ref. Data 25, 1113 (1996)

    ADS  Google Scholar 

  47. R. Bocquet, J. Demaison, L. Poteau, M. Liedtke, S. Belov, K.M.T. Yamada, G. Winnewisser, C. Gerke, J. Gripp, T. Köhler, J. Mol. Spectrosc. 177, 154 (1996)

    ADS  Google Scholar 

  48. S. Brünken, H.S.P. Müller, F. Lewen, G. Winnewisser, Phys Chem Chem Phys 5, 1515 (2003)

    Google Scholar 

  49. I.A. Smirnov, E.A. Alekseev, V.V. Ilyushin, L. Margulés, R.A. Motiyenko, B.J. Drouin, J. Mol. Spectrosc. 295, 44 (2014)

    ADS  Google Scholar 

  50. A. Omar, S. Eliet, A. Cuisset, G. Dhont, C. Coeur-Tourneur, R. Bocquet, G. Mouret, F. Hindle, IEEE Sens. J. 15, 6141 (2015)

    ADS  Google Scholar 

  51. N. Rothbart, O. Holz, R. Koczulla, K. Schmalz, and H.-W. Hübers, Sensors 19, (2019)

  52. P.F.-X. Neumaier, K. Schmalz, J. Borngräber, R. Wylde, H.-W. Hübers, Analyst 140, 213 (2015)

    ADS  Google Scholar 

  53. J.M. Vacherand, B.P. Van Eijck, J. Burie, J. Demaison, J. Mol. Spectrosc. 118, 355 (1986)

    ADS  Google Scholar 

  54. P. Groner, S. Albert, E. Herbst, F. C. De Lucia, F. J. Lovas, B. J. Drouin, and J. C. Pearson, The Astrophysical Journal Supplement Series 142, 145 (2002)

  55. Ilyushin, E. A. Alekseev, O. A. Dorovskaya, R. A. Motiyenko, and L. Margules, 2015 International Young Scientists Forum on Applied Physics (YSF) (2015)

  56. L. Chen, S. Oishi, Rev. Laser Eng. 34, 251 (2006)

    Google Scholar 

  57. R. E. Peale, A. V. Muravjov, J. W. Cleary, T. Brusentsova, C. J. Fredricksen, G. D. Boreman, V. L. Vaks, A. V. Maslovsky, and S. D. Nikifirov, Optical Terahertz Science and Technology (2007)

Download references

Acknowledgement

This work was supported by the National Science Foundation under Grant CBET-1851291.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim E. Rice.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 339 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rice, T.E., Chowdhury, M.A.Z., Mansha, M.W. et al. VOC Gas Sensing Via Microelectronics-Based Absorption Spectroscopy at 220–330 GHz. Appl. Phys. B 126, 152 (2020). https://doi.org/10.1007/s00340-020-07501-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07501-9

Navigation