Skip to main content
Log in

Laser-based CO concentration and temperature measurements in high-pressure shock-tube studies of n-heptane partial oxidation

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This paper presents a laser-based absorption technique for measuring temperature and CO concentration in high-pressure shock tubes. Two fundamental vibrations of CO (v" = 0, P8, 4.73 µm and v" = 1, R21, 4.56 µm) were selected for high-temperature sensitivity with a reduced influence from pressure broadening compared to previous work. Single-pass absorption (80 mm path length) was measured with two quantum-cascade lasers. The technique was demonstrated by measuring time-resolved temperature for non-reactive mixtures at 1100–1960 K and 1.2–9.7 bar. During partial oxidation of n-heptane, temperature and CO concentrations were measured with 4 µs time resolution at 1360–1670 K and 5.8–8.2 bar. Interference from broadband CO2 absorption was quantified and subtracted. Measured data in the burnout state are in excellent agreement with predictions from kinetics mechanisms (Mehl et al. Proc Combust Inst 33:193, 2011; Zhang et al. Combust Flame 172:116, 2016) over the entire range of operating conditions, which validates the performance of the current laser-absorption technique in reactive-mixture measurements. Additionally, time-resolved temperature and CO-concentration measurements agree well with predictions based on the Mehl et al. mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.K. Hanson, D.F. Davidson, Prog. Energy Combust. Sci. 44, 103 (2014)

    Article  Google Scholar 

  2. S.M. Sarathy, A. Farooq, G.T. Kalghatgi, Prog. Energy Combust. Sci. 65, 67 (2018)

    Article  Google Scholar 

  3. D. Nativel, B. Shu, J. Herzler, M. Fikri, C. Schulz, Proc. Combust. Inst. 37, 197 (2019)

    Article  Google Scholar 

  4. G.A. Pang, D.F. Davidson, R.K. Hanson, Proc. Combust. Inst. 32, 181 (2009)

    Article  Google Scholar 

  5. C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Prog. Energy Combust. Sci. 60, 132 (2017)

    Article  Google Scholar 

  6. Z. Hong, D.F. Davidson, E.A. Barbour, R.K. Hanson, Proc. Combust. Inst. 33, 309 (2011)

    Article  Google Scholar 

  7. F. Sen, B. Shu, T. Kasper, J. Herzler, O. Welz, M. Fikri, B. Atakan, C. Schulz, Combust. Flame 169, 307 (2016)

    Article  Google Scholar 

  8. A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Opt. 48, 6740 (2009)

    Article  ADS  Google Scholar 

  9. K. Banke, R. Hegner, D. Schröder, C. Schulz, B. Atakan, S.A. Kaiser, Fuel 243, 97 (2019)

    Article  Google Scholar 

  10. W. Ren, A. Farooq, D.F. Davidson, R.K. Hanson, Appl. Phys. B 107, 849 (2012)

    Article  ADS  Google Scholar 

  11. K. Sun, R. Sur, X. Chao, J.B. Jeffries, R.K. Hanson, R.J. Pummill, K.J. Whitty, Proc. Combust. Inst. 34, 3593 (2013)

    Article  Google Scholar 

  12. R.M. Spearrin, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Appl. Opt. 53, 1938 (2014)

    Article  ADS  Google Scholar 

  13. W. Wei, W.Y. Peng, Y. Wang, R. Choudhary, S. Wang, J. Shao, R.K. Hanson, Appl. Phys. B 125, 9 (2018)

    Article  ADS  Google Scholar 

  14. D. He, L. Shi, D. Nativel, J. Herzler, M. Fikri, C. Schulz, Combust. Flame 216, 194 (2020)

    Article  Google Scholar 

  15. E.F. Nasir, A. Farooq, Proc. Combust. Inst. 36, 4453 (2017)

    Article  Google Scholar 

  16. C.R. Mulvihill, E.L. Petersen, Appl. Phys. B 123, 255 (2017)

    Article  ADS  Google Scholar 

  17. K. Sun, X. Chao, R. Sur, J.B. Jeffries, R.K. Hanson, Appl. Phys. B-Lasers O. 110, 497 (2013)

    Article  ADS  Google Scholar 

  18. F.A. Bendana, D.D. Lee, S.A. Schumaker, S.A. Danczy, R.M. Spearrin, Appl. Phys. B 125, 204 (2019)

    Article  ADS  Google Scholar 

  19. C.K. Westbrook, J. Warnatz, W.J. Pitz: Symposium (International) on Combustion 22, 893 (1989)

  20. E. Ranzi, P. Gaffuri, T. Faravelli, P. Dagaut, Combust. Flame 103, 91 (1995)

    Article  Google Scholar 

  21. H.J. Curran, P. Gaffuri, W.J. Pitz, C.K. Westbrook, Combust. Flame 114, 149 (1998)

    Article  Google Scholar 

  22. E.D. B. Sirjean, D.A. Sheen, X.-Q. You, C. Sung, A.T. Holley, F.N. Egolfopoulos, H. Wang, S.S. Vasu, D.F. Davidson, R.K. Hanson, H. Pitsch, C.T. Bowman, A. Kelley, C.K. Law, W.Tsang, N.P. Cernansky, D.L. Miller, A. Violi, R.P. Lindstedt: JetSurF version 1.0 (Sep 15, 2009) https://web.stanford.edu/group/haiwanglab/JetSurF/JetSurF1.0/index.html

  23. M. Mehl, W.J. Pitz, C.K. Westbrook, H.J. Curran, Proc. Combust. Inst. 33, 193 (2011)

    Article  Google Scholar 

  24. K. Zhang, C. Banyon, J. Bugler, H.J. Curran, A. Rodriguez, O. Herbinet, F. Battin-Leclerc, C. B'Chir, K.A. Heufer, Combust. Flame 172, 116 (2016)

    Article  Google Scholar 

  25. B. Atakan, A.K. Kaiser, J. Herzler, S. Porras, O. Deutschmann, T. Kasper, M. Fikri, R. Schießl, D. Schröder, C. Rudolph, D. Kaczmarek, H. Gossler, S. Drost, V. Bykov, U. Maas, C. Schulz: Renew. Sustain. Energ. Rev., in review (2020)

  26. J. Herzler, Y. Sakai, M. Fikri, C. Schulz, Proc. Combust. Inst. 37, 5705 (2019)

    Article  Google Scholar 

  27. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, J. Quant. Spectrosc. Radiat. Transf. 111, 2139 (2010)

    Article  ADS  Google Scholar 

  28. C.S. Goldenstein, V.A. Miller, R. Mitchell Spearrin, C.L. Strand: J. Quant. Spectrosc. Radiat. Transf. 200, 249 (2017)

  29. I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tan, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, B.J. Drouin, J.M. Flaud, R.R. Gamache, J.T. Hodges, D. Jacquemart, V.I. Perevalov, A. Perrin, K.P. Shine, M.A.H. Smith, J. Tennyson, G.C. Toon, H. Tran, V.G. Tyuterev, A. Barbe, A.G. Császár, V.M. Devi, T. Furtenbacher, J.J. Harrison, J.M. Hartmann, A. Jolly, T.J. Johnson, T. Karman, I. Kleiner, A.A. Kyuberis, J. Loos, O.M. Lyulin, S.T. Massie, S.N. Mikhailenko, N. Moazzen-Ahmadi, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, O.L. Polyansky, M. Rey, M. Rotger, S.W. Sharpe, K. Sung, E. Starikova, S.A. Tashkun, J.V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, E.J. Zak, J. Quant. Spectrosc. Radiat. Transf. 203, 3 (2017)

    Article  ADS  Google Scholar 

  30. O. Mathieu, C.R. Mulvihill, E.L. Petersen, Fuel 236, 1164 (2019)

    Article  Google Scholar 

  31. M. Deminsky, V. Chorkov, G. Belov, I. Cheshigin, A. Knizhnik, E. Shulakova, M. Shulakov, I. Iskandarova, V. Alexandrov, A. Petrusev, I. Kirillov, M. Strelkova, S. Umanski, B. Potapkin, Comput. Mater. Sci. 28, 169 (2003)

    Article  Google Scholar 

  32. A. Predoi-Cross, K. Esteki, H. Rozario, H. Naseri, S. Latif, F. Thibault, V. Malathy Devi, M.A.H. Smith, A.W. Mantz,: J. Quant. Spectrosc. Radiat. Transf. 184, 322 (2016)

  33. J.V. Michael, J.W. Sutherland, Int. J. Chem. Kinet. 18, 409 (1986)

    Article  Google Scholar 

  34. D.I. Pineda, F.A. Bendana, K.K. Schwarm, R.M. Spearrin, Combust. Flame 207, 379 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support of this work by the German Research Foundation within the DFG project 279056804 and 229633504. JBJ acknowledges support through the DFG Mercator Fellowship program. DH acknowledges support from Dr. Zhiming Peng, Tsinghua University and the state-sponsored postgraduate program for building high-level universities by China Scholarship Council (No. 201806210220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha Fikri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, D., Nativel, D., Herzler, J. et al. Laser-based CO concentration and temperature measurements in high-pressure shock-tube studies of n-heptane partial oxidation. Appl. Phys. B 126, 142 (2020). https://doi.org/10.1007/s00340-020-07492-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07492-7

Navigation