Skip to main content
Log in

Design and simulation of a compact and ultra-wideband polarization beam splitter based on sub-wavelength grating multimode interference coupler

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A compact and ultra-wideband multimode interferometer (MMI)-based polarization beam splitter (PBS) is designed in a silicon-on-insulator (SOI) platform. A sub-wavelength grating (SWG) structure is employed in the multimode region to reduce the overall length of the structure and also increase its operating bandwidth. Instead of using the beat-length difference to separate the transverse electric (TE) and transverse magnetic (TM) polarized waves, the TM waves are directly coupled to the output bar port through an interconnecting waveguide, while the TE polarized waves are transmitted to the cross port by the self-imaging process. This substantially reduces the length of the PBS and the overall footprint can be as small as 4.8 × 21 µm2. The proposed device exhibits the extinction ratio of more than 15 dB in a 250 nm wavelength range (1.38–1.63 µm) and more than 12 dB in the 350 nm wavelength range (1.3–1.65 µm) for the TE and TM polarizations, respectively. In addition, the insertion loss remains below 1.2 dB for both the TE and TM polarization in a broad wavelength range from 1.38 to 1.54 µm. The proposed PBS can be fabricated by a single-step etching process on an SOI wafer. Moreover, our simulations show the robustness of the PBS performance to the fabrication errors’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Xiao, Z. Guo, Ultracompact polarization-insensitive power splitter using subwavelength gratings. IEEE Photon. Technol. Lett. 30, 529–532 (2018)

    Article  ADS  Google Scholar 

  2. M. Yin, W. Yang, Y. Li, X. Wang, H. Li, CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter. Opt. Commun. 335, 48–52 (2015)

    Article  ADS  Google Scholar 

  3. Z. Guo, J. Xiao, Ultracompact Silicon-Based Polarization Beam Splitter Using Subwavelength Gratings. IEEE Photon. Technol. Lett. 29, 1800–1803 (2017)

    Article  ADS  Google Scholar 

  4. Y. Wang, M. Ma, H. Yun, Z. Lu, X. Wang, N.A. Jaeger, L. Chrostowski, Ultra-compact sub-wavelength grating polarization splitter-rotator for silicon-on-insulator platform. IEEE Photon. J. 8, 1–9 (2016)

    Google Scholar 

  5. K. Tan, Y. Huang, G.-Q. Lo, C. Yu, C. Lee, Experimental realization of an O-band compact polarization splitter and rotator. Opt. Express 25, 3234–3241 (2017)

    Article  ADS  Google Scholar 

  6. T. Barwicz, M.R. Watts, M.A. Popović, P.T. Rakich, L. Socci, F.X. Kärtner, E.P. Ippen, H.I. Smith, Polarization-transparent microphotonic devices in the strong confinement limit. Nat. Photon. 1, 57–60 (2007)

    Article  ADS  Google Scholar 

  7. S. Soudi, B. Rahman, Design of a compact polarization splitter by using identical coupled silicon nanowires. J. Lightw. Technol. 34, 4169–4178 (2016)

    Article  ADS  Google Scholar 

  8. L. Gao, F. Hu, X. Wang, L. Tang, Z. Zhou, Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic–dielectric coupling. Appl. Phys. B 113, 199–203 (2013)

    Article  ADS  Google Scholar 

  9. D. Dai, Z. Wang, J. Peters, J.E. Bowers, Compact polarization beam splitter using an asymmetrical Mach-Zehnder interferometer based on silicon-on-insulator waveguides. IEEE Photon. Technol. Lett. 24, 673–675 (2012)

    Article  ADS  Google Scholar 

  10. B. Rahman, N. Somasiri, C. Themistos, K. Grattan, Design of optical polarization splitters in a single-section deeply etched MMI waveguide. Appl. Phys. B 73, 613–618 (2001)

    Article  ADS  Google Scholar 

  11. D.W. Kim, M.H. Lee, Y. Kim, K.H. Kim, Planar-type polarization beam splitter based on a bridged silicon waveguide coupler. Opt. Express 23, 998–1004 (2015)

    Article  ADS  Google Scholar 

  12. B. Ni, J. Xiao, Ultracompact and broadband silicon-based polarization beam splitter using an asymmetrical directional coupler. IEEE J. Quantum Electron. 53, 1–8 (2017)

    Article  Google Scholar 

  13. J. Wang, B. Niu, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, F. Gan, Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and a mode-sorting asymmetric Y-junction. Opt. Express 22, 13565–13571 (2014)

    Article  ADS  Google Scholar 

  14. D. Pérez-Galacho, R. Zhang, A. Ortega-Monux, R. Halir, C. Alonso-Ramos, P. Runge, K. Janiak, G. Zhou, H.-G. Bach, A.G. Steffan, Integrated polarization beam splitter for 100/400 GE polarization multiplexed coherent optical communications. J. Lightw. Technol. 32, 361–368 (2014)

    Article  ADS  Google Scholar 

  15. W. Song, K. Xie, Optimal design of a multi-mode interference splitter based on SOI. Opt. Lett. 4, 92–95 (2008)

    Article  Google Scholar 

  16. L. Xu, Y. Wang, A. Kumar, D. Patel, E. El-Fiky, Z. Xing, R. Li, D.V. Plant, Polarization beam splitter based on MMI coupler with SWG birefringence engineering on SOI. IEEE Photon. Technol. Lett. 30, 403–406 (2018)

    Article  ADS  Google Scholar 

  17. N. Abadía, MdG Saber, F. Bello, A. Samani, E. El-Fiky, Y. Wang, J.F. Donegan, D.V. Plant, CMOS-compatible multi-band plasmonic TE-pass polarizer. Opt. Express 26, 30292–30304 (2018)

    Article  ADS  Google Scholar 

  18. https://www.lumerical.com/. Accessed 7 Apr 2020

  19. L.-W. Chung, S.-L. Lee, Y.-J. Lin, Principles, and application of reduced beat length in MMI couplers. Opt. Express 14, 8753–8764 (2006)

    Article  ADS  Google Scholar 

  20. H. Yang, P. Zheng, P. Liu, G. Hu, B. Yun, Y. Cui, Design of polarization-insensitive 2 × 2 multimode interference coupler based on double strip silicon nitride waveguides. Optics Commun. 410, 559–564 (2018)

    Article  ADS  Google Scholar 

  21. K. Okamoto, Fundamentals of optical waveguides (Academic press, Cambridge, 2006)

    Google Scholar 

  22. J. Chen, Y. Zhang, Y. Shi, An On-Chip Triplexer Based on Silicon Bragg Grating-Assisted Multimode Interference Couplers. IEEE Photon. Technol. Lett. 29, 63–65 (2017)

    Article  ADS  Google Scholar 

  23. L.B. Soldano, E.C. Pennings, Optical multi-mode interference devices based on self-imaging: principles and applications. J. Lightw. Technol. 13, 615–627 (1995)

    Article  ADS  Google Scholar 

  24. A. Ortega-Moñux, C. Alonso-Ramos, A. Maese-Novo, R. Halir, L. Zavargo-Peche, D. Pérez-Galacho, I. Molina-Fernández, J.G. Wangüemert-Pérez, P. Cheben, J.H. Schmid, An ultra-compact multimode interference coupler with a subwavelength grating slot. Laser Photon. Rev. 7, L12–L15 (2013)

    Article  ADS  Google Scholar 

  25. A. Maese-Novo, R. Halir, S. Romero-García, D. Pérez-Galacho, L. Zavargo-Peche, A. Ortega-Moñux, I. Molina-Fernández, J. Wangüemert-Pérez, P. Cheben, Wavelength independent multimode interference coupler. Opt. Express 21, 7033–7040 (2013)

    Article  ADS  Google Scholar 

  26. R. Halir, P. Cheben, J.M. Luque-González, J.D. Sarmiento-Merenguel, J.H. Schmid, G. Wangüemert-Pérez, D.X. Xu, S. Wang, A. Ortega-Moñux, Í. Molina-Fernández, Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial. Laser Photon. Rev. 10, 1039–1046 (2016)

    Article  ADS  Google Scholar 

  27. L. Xu, Y. Wang, E. El-Fiky, D. Mao, A. Kumar, Z. Xing, M.G. Saber, M. Jacques, D.V. Plant, Compact broadband polarization beam splitter based on multimode interference coupler with internal photonic crystal for the SOI Platform. J. Lightw. Technol. 37, 1231–1240 (2019)

    Article  ADS  Google Scholar 

  28. B. Shen, P. Wang, R. Polson, R. Menon, An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nat. Photon. 9, 378–382 (2015)

    Article  ADS  Google Scholar 

  29. W. Chang, X. Ren, Y. Ao, L. Lu, M. Cheng, L. Deng, D. Liu, M. Zhang, Inverse design and demonstration of an ultracompact broadband dual-mode 3 dB power splitter. Opt. Express 26, 24135–24144 (2018)

    Article  ADS  Google Scholar 

  30. R. Halir, P.J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J.H. Schmid, J. Lapointe, D.X. Xu, J.G. Wangüemert-Pérez, Í. Molina-Fernández, Waveguide sub-wavelength structures: a review of principles and applications. Laser Photon. Rev. 9, 25–49 (2015)

    Article  ADS  Google Scholar 

  31. D.C. O’Shea, T.J. Suleski, A.D. Kathman, D.W. Prather, Diffractive optics: design, fabrication, and test (Spie Press, Bellingham, 2004)

    Google Scholar 

  32. N. Abadía, X. Dai, Q. Lu, W.H. Guo, D. Patel, D.V. Plant, J.F. Donegan, Highly fabrication tolerant InP based polarization beam splitter based on p-i-n structure. Opt. Express 25, 10070–10077 (2017)

    Article  Google Scholar 

  33. L.M. Augustin, R. Hanfoug, J.J.G.M. van der Tol, W.J.M. de Laat, M.K. Smit, A compact integrated polarization splitter/converter in InGaAsP–InP. IEEE Photon. Technol. Lett. 19, 1286–1288 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Miri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhadi, S., Miri, M. & Alighanbari, A. Design and simulation of a compact and ultra-wideband polarization beam splitter based on sub-wavelength grating multimode interference coupler. Appl. Phys. B 126, 118 (2020). https://doi.org/10.1007/s00340-020-07468-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07468-7

Navigation