Skip to main content
Log in

Mode evolution mechanism of Pr3+:YLF single longitudinal mode laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We develop a theoretical model of multimode rate equation that accurately describes mode evolution mechanism of prelase Q-switched Pr3+:YLF single longitudinal mode (SLM). We find that it is important to consider the effect of gain difference when calculating the mode competition time accurately. We identify that there is an optimal parameter for the two step signal of acoustic-optic modulator which determines the stability of SLM output. Then, a visible light direct oscillation Q-switched SLM Pr3+:YLF laser at 639.5 nm is obtained, and the experimental results is agree with the simulation very well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.Q. Yao, X.M. Duan, F. Dan, 7.3 W of single-frequency output power at 2.09 μm from an Ho:YAG monolithic nonplanar ring laser. Opt. Lett. 33(18), 2161–2163 (2008)

    Article  ADS  Google Scholar 

  2. X. Li, Q. Pan, C. Jing, C. Xie, K. Peng, LD pumped intracavity frequency-doubled and frequecny-stabilized Nd:YAP/KTP laser with 1.1 W output at 540 nm. Opt. Commun. 201, 165–171 (2002)

    Article  ADS  Google Scholar 

  3. C.T. Wu, Y.L. Ju, R.L. Zhou, X.M. Duan, Y.Z. Wang, Achieving single-longitudinal-mode output about Tm:YAG laser at room temperature. Laser Phys. 21, 372–375 (2011)

    Article  ADS  Google Scholar 

  4. E. Wu, H. Pan, S. Zhang et al., High power single-longitudinal-mode operation in a twisted-mode-cavity laser with a c-cut Nd:GdVO4 crystal. Appl. Phys. B (Lasers Opt.) 80(4–5), 459–462 (2005)

    Article  ADS  Google Scholar 

  5. D.X. Zhang, K. Yu, B.Q. Yao, A single longitudinal mode Tm, Ho:YLF laser with a continuously tunable frequency of 2.1 GHz with double F–P etalons. Laser Phys. 23(8), 085002 (2013)

    Article  ADS  Google Scholar 

  6. T. Dai, J. Wu, Z. Zhang, Diode-end-pumped single-longitudinal-mode Er:LuAG laser with intracavity etalons at 1.6 μm. Appl. Opt. 54, 9500–9503 (2015)

    Article  ADS  Google Scholar 

  7. F. Chen, B.Q. Yao, C. Yuan, Diode-pumped single-frequency Tm:YAG laser with double etalons. Laser Phys. 21(5), 851–854 (2011)

    Article  ADS  Google Scholar 

  8. C.T. Wu, Y.L. Ju, Q. Wang, Room temperature operation of single frequency Tm:LuAG laser end-pumped by laser-diode. Laser Phys. Lett. 6(10), 07–710 (2009)

    Article  Google Scholar 

  9. D.C. Hanna, B. Luther-Davies, H.N. Rutt, R.C. Smith, A two-step Q-switching technique for producing high power in a single longitudinal mode. Opto-electronics 3, 163–169 (1971)

    Article  Google Scholar 

  10. C. Bollig, W.A. Clarkson, D.C. Hanna, Stable high-repetition-rate single-frequency Q-switched operation by feedback suppression of relaxation oscillation. Opt. Lett. 20(12), 1383–1385 (1995)

    Article  ADS  Google Scholar 

  11. P. Yan, M. Gong, T. Xie, Stabilization of pulse-to-pulse energy and width by gain-controlled prelase in laser-diode-pumped Q-switched laser. Opt. Eng. 42(1), 159–162 (2002)

    Article  ADS  Google Scholar 

  12. H.H. Lin, Z. Sui, M.Z. Li, Practical laser-diode pumped prelase electro-optic Q-switched single-longitudinal-mode laser. Chin. J. Lasers 31(8), 915–918 (2004)

    Google Scholar 

  13. S.T. Dai, F. Shi, J. Huang, High-repetition-rate single-frequency electro-optic Q-switched Nd:YAG laser with feedback controlled prelase. In AOPC 2015: Advances in Laser Technology and Applications, vol. 9671. International Society for Optics and Photonics (2015).

  14. B. Xu, Z. Liu, H. Xu, Z. Cai, C. Zeng, S. Huang, Highly efficient InGaN-LD-pumped bulk Pr:YLF orange laser at 607 nm. Opt. Commun. 305, 96–99 (2013)

    Article  ADS  Google Scholar 

  15. X.D. Li, X. Yu, R.P. Yan, R.W. Fan, D.Y. Chen, Optical and laser properties of Pr3+:YLF crystal. Laser Phys. Lett. 8, 791–794 (2011)

    Article  ADS  Google Scholar 

  16. H. Jelínková, M. Fibrich, Electro-optically Q-switched Pr:YAP laser generating at 747 nm. Laser Phys. Lett. 6, 517–520 (2009)

    Article  ADS  Google Scholar 

  17. X.H. Fu, Y.L. Li, H.L. Jiang, Diode-pumped Pr3+:YAlO3/LBO violet laser at 374 nm. Laser Phys. 21, 864–866 (2011)

    Article  ADS  Google Scholar 

  18. P.W. Metz, F. Reichert, F. Moglia, S. Muller, D. Marzahl, C. Krankel, G. Huber, High-power red, orange, and green Pr3+:LiYF4 lasers. Opt. Lett. 39(11), 3193–3196 (2014)

    Article  ADS  Google Scholar 

  19. M. Demesh, D. Marzahl, A. Yasukevich, V. Kisel, G. Huber, N. Kuleshov, C. Krankel, Passively Q-switched Pr:YLF laser with a Co2+:MgAl2O4 saturable absorber. Opt. Lett. 42(22), 4687–4690 (2017)

    Article  ADS  Google Scholar 

  20. N. Sugiyama, S. Fujita, Y. Hara, H. Tanaka, F. Kannari, Diode-pumped 640 nm Pr:YLF regenerative laser pulse amplifier. Opt. Lett. 44(13), 3370–3373 (2019)

    Article  ADS  Google Scholar 

  21. H. Tanaka, S. Fujita, F. Kannari, High-power visibly emitting Pr3+:YLF laser end pumped by single-emitter or fiber-coupled GaN blue laser diodes. Appl. Opt. 57(21), 5923–5928 (2018)

    Article  ADS  Google Scholar 

  22. Y. Ma, A. Vallés, J.C. Tung, Y.F. Chen, K. Miyamoto, T. Omatsu, Direct generation of red and orange optical vortex beams from an off-axis diode-pumped Pr3+:YLF laser. Opt. Express 27(13), 18190–18200 (2019)

    Article  ADS  Google Scholar 

  23. D.C. Hanna, B. Luther-Davies, R.C. Smith, “Single longitudinal mode selection of high power actively Q-switched lasers. Opto-electronics 4(3), 249–256 (1972)

    Article  Google Scholar 

  24. W.R. Sooy, The natural selection of modes in a passive Q-switched laser. Appl. Phys. Lett. 7, 36–37 (1965)

    Article  ADS  Google Scholar 

  25. W.G. Wagner, B.A. Lengyel, Evolution of the giant pulse in a laser. J. Appl. Phys. (1963)

Download references

Acknowledgements

We thank the Key Laboratory of Jilin Province Solid-State Laser Technology and Application for the use of the equipment.

Funding

The National Natural Fund Project of China (Grant no. 61505012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongJi Yu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, L., Dai, W., Yu, Y. et al. Mode evolution mechanism of Pr3+:YLF single longitudinal mode laser. Appl. Phys. B 126, 112 (2020). https://doi.org/10.1007/s00340-020-07466-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07466-9

Navigation