Skip to main content
Log in

Discrimination and estimation for dephasing sources of trapped ion qubits

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, we propose a handy method to discriminate and estimate the dephasing noise sources of trapped ion qubits, which are mainly magnetic field noise and laser frequency noise. In our method, the conventional Ramsey experiment is used to measure the dephasing time \(T_2^*\) and calculate the total linewidth of dephasing noise. Transitions with different magnetic field sensitivities and error propagation theory are employed to quantitatively estimate the linewidth of each noise. We experimentally demonstrated this method by taking advantage of five magnetically sensitive transitions of single trapped \(^{40}\)Ca\(^+\), and the linewidth of the laser frequency noise and magnetic field noise is determined to be 493.3 ± 8.1 Hz and 181.4 ± 3.5 \(\upmu \)G, respectively, in our system. This method also can be used to separate magnetic field noise and other dephasing noise in other atomic system such as neutral atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  2. M.A. Nielsen, I.L. Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  3. F. Schmidt-kaler, H. Häffner, M. Riebe, S. Gulde, G.P.T. Lancaster, T. Deuschle, C. Becher, C.F. Roos, J. Eschner, R. Blatt, Nature 422, 408 (2003)

    Article  ADS  Google Scholar 

  4. M. Riebe, H. Häffner, C.F. Roos, W. Hänsel, J. Benhelm, G.P.T. Lancaster, T.W. Körber, C. Becher, F. Schmidt-Kaler, D.F.V. James, Nature 429, 734 (2004)

    Article  ADS  Google Scholar 

  5. T. Monz, K. Kim, W. Hänsel, M. Riebe, A.S. Villar, P. Schindler, M. Chwalla, M. Hennrich, R. Blatt, Phys. Rev. Lett. 102, 040501 (2009)

    Article  ADS  Google Scholar 

  6. T. Monz, P. Schindler, J.T. Barreiro, M. Chwalla, D. Nigg, W.A. Coish, M. Harlander, W. Hänsel, M. Hennrich, R. Blatt, Phys. Rev. Lett. 106, 130506 (2011)

    Article  ADS  Google Scholar 

  7. H. Häffner, W. Hänsel, M. Riebe, C.F. Roos, J. Benhelm, R. Blatt, D. Chek-al kar, M. Chwalla, T. Körber, U.D. Rapol, M. Riebe, P.O. Schmidt, C. Becher, O. Gühne, W. Dür, Nature 438, 643 (2005)

    Article  ADS  Google Scholar 

  8. F. Schmidt-kaler, S. Gulde, M. Riebe, T. Deuschle, A. Kreuter, G. Lancaster, C. Becher, J. Eschner, H. Häffner, R. Blatt, J. Phys. B Atomic Mol. Opt. Phys. 36, 623 (2003)

    Article  ADS  Google Scholar 

  9. C.F. Roos, M. Chwalla, K. Kim, M. Riebe, R. Blatt, Nature 443, 316 (2006)

    Article  ADS  Google Scholar 

  10. B. Merkel, K. Thirumalai, J. Tarlton, V. Schäfer, C. Ballance, T. Harty, D. Lucas, Rev. Sci. Inst. 90, 044702 (2019)

    Article  ADS  Google Scholar 

  11. Y. Wang, M. Um, J. Zhang, S. An, M. Lyu, J.N. Zhang, L.M. Duan, D. Yum, K. Kim, Nat. Photon. 11, 646 (2017)

    Article  ADS  Google Scholar 

  12. N. Akerman, N. Navon, S. Kotler, Y. Glickman, R. Ozeri, N. J. Phys. 17, 113060 (2015)

    Article  Google Scholar 

  13. J. Bylander, S. Gustavsson, F. Yan, F. Yoshihara, K. Harrabi, G. Fitch, D.G. Cory, D. Yum, Y. Nakamura, J.S. Tsai, W.D. Oliver, Nat. Phys. 7, 565 (2011)

    Article  Google Scholar 

  14. G.A. Álvarez, D. Suter, Phys. Rev. Lett. 107, 230501 (2011)

    Article  ADS  Google Scholar 

  15. L.Z. He, M.C. Zhang, C.W. Wu, Y. Xie, W. Wu, P.X. Chen, Chin. Phys. B 27, 120303 (2018)

    Article  Google Scholar 

  16. X. Zhang, Y. Shen, J. Zhang, J. Casanova, L. Lamata, E. Solano, M.H. Yung, J.N. Zhang, K. Kim, Nat. Commun. 6, 7917 (2015)

    Article  ADS  Google Scholar 

  17. C.F. Roos, Controlling the quantum state of trapped ions. PhD dissertation, University of Innsbruck (2000)

  18. H.H. Ku, J. Res. Natl. Bur. Stand. C Eng. Instrum. 70C(4) (1966)

  19. N.F. Ramsey, Phys. Rev. 76, 996 (1949)

    Article  Google Scholar 

  20. P.A. Barton, C.J.S. Donald, D.M. Lucas, D.A. Stevens, A.M. Steane, D.N. Stacey, Phys. Rev. A 62, 032503 (2000)

    Article  ADS  Google Scholar 

  21. D. Lucas, A. Ramos, J. Home, M. McDonnell, S. Nakayama, J.P. Stacey, S. Webster, D. Stacey, A. Steane, Phys. Rev. A 69, 012711 (2004)

    Article  ADS  Google Scholar 

  22. C. Roos, T. Zeiger, H. Rohde, H.C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, R. Blatt, Phys. Rev. Lett. 83, 4713 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Basic Research Program of China (Grant No. 2016YFA0301903), the National Natural Science Foundation of China (Grant Nos. 11174370, 11304387, 61632021, 11305262, and 11574398), and the Research Plan Project of National University of Defense Technology (Grant No. ZK16-03-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping-xing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wu, W., Wu, Cw. et al. Discrimination and estimation for dephasing sources of trapped ion qubits. Appl. Phys. B 126, 20 (2020). https://doi.org/10.1007/s00340-019-7366-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7366-x

Navigation