Skip to main content

Could photoluminescence spectroscopy be an alternative technique for the detection of microplastics? First experiments using a 405 nm laser for excitation

Abstract

We performed first experiments to evaluate the potential of photoluminescence spectroscopy to detect microplastics using a 405 nm laser diode for sample excitation. A set of nine bulk plastic samples and nine samples of natural materials typically found in the marine environment were examined and compared. The plastic and non-plastic materials could be differentiated based on the shape of the acquired photoluminescence spectra. Our results show that photoluminescence spectroscopy holds the potential for reliable characterization of environmental samples regarding the microplastic content.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. 1.

    C.J. Moore, Environ. Res. 108, 131 (2008)

    Google Scholar 

  2. 2.

    M.A. Browne, P. Crump, S.J. Niven, E. Teuten, A. Tonkin, T. Galloway, R. Thompson, Environ. Sci. Technol. 45, 9175 (2011)

    ADS  Google Scholar 

  3. 3.

    M.R. Gregory, Mar. Pollut. Bull. 32, 867 (1996)

    Google Scholar 

  4. 4.

    L.S. Fendall, M.A. Sewell, Mar. Pollut. Bull. 58, 1225 (2009)

    Google Scholar 

  5. 5.

    A.L. Andrady, Mar. Pollut. Bull. 62, 1596 (2011)

    Google Scholar 

  6. 6.

    Statista, https://www.Statista.Com/Statistics/282732/Global-Production-of-Plastics-since-1950/ (2019). Accessed 23 May 2019

  7. 7.

    J.R. Jambeck, R. Geyer, C. Wilcox, T.R. Siegler, M. Perryman, A. Andrady, R. Narayan, K.L. Law, Science (80) 347, 768 (2015)

    ADS  Google Scholar 

  8. 8.

    P.G. Ryan, C.L. Moloney, Nature 361, 23 (1993)

    ADS  Google Scholar 

  9. 9.

    R.C. Thompson, Y. Olsen, R.P. Mitchell, A. Davis, S.J. Rowland, A.W.G. John, D. McGonigle, A.E. Russell, Science 304, 838 (2004)

    Google Scholar 

  10. 10.

    V. Hidalgo-Ruz, L. Gutow, R.C. Thompson, M. Thiel, Environ. Sci. Technol. 46, 3060 (2012)

    ADS  Google Scholar 

  11. 11.

    J.P.G.L. Frias, P. Sobral, A.M. Ferreira, Mar. Pollut. Bull. 60, 1988 (2010)

    Google Scholar 

  12. 12.

    L.M. Rios, C. Moore, P.R. Jones, Mar. Pollut. Bull. 54, 1230 (2007)

    Google Scholar 

  13. 13.

    C.M. Rochman, E. Hoh, B.T. Hentschel, S. Kaye, Environ. Sci. Technol. 47, 1646 (2013)

    Google Scholar 

  14. 14.

    E.L. Teuten, S.J. Rowland, T.S. Galloway, R.C. Thompson, Environ. Sci. Technol. 41, 7759 (2007)

    ADS  Google Scholar 

  15. 15.

    C.M. Rochman, T. Kurobe, I. Flores, S.J. Teh, Sci. Total Environ. 493, 656 (2014)

    ADS  Google Scholar 

  16. 16.

    Y. Mato, T. Isobe, H. Takada, H. Kanehiro, C. Ohtake, T. Kaminuma, Environ. Sci. Technol. 35, 318 (2001)

    ADS  Google Scholar 

  17. 17.

    E.R. Zettler, T.J. Mincer, L.A. Amaral-Zettler, Environ. Sci. Technol. 47, 7137 (2013)

    ADS  Google Scholar 

  18. 18.

    L. Van Cauwenberghe, C.R. Janssen, Environ. Pollut. 193, 65 (2014)

    Google Scholar 

  19. 19.

    A. Mathalon, P. Hill, Mar. Pollut. Bull. 81, 69 (2014)

    Google Scholar 

  20. 20.

    M.A. Browne, A. Dissanayake, T.S. Galloway, D.M. Lowe, R.C. Thompson, Environ. Sci. Technol. 42, 5026 (2008)

    ADS  Google Scholar 

  21. 21.

    N. von Moos, P. Burkhardt-Holm, A. Koehler, Environ. Sci. Technol. 46, 327 (2012)

    Google Scholar 

  22. 22.

    J.D. Meeker, S. Sathyanarayana, S.H. Swan, Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 2097 (2009)

    Google Scholar 

  23. 23.

    C.E. Talsness, A.J.M. Andrade, S.N. Kuriyama, J.A. Taylor, F.S. vom Saal, Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364, 2079 (2009)

    Google Scholar 

  24. 24.

    H.M. Koch, A.M. Calafat, Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 2063 (2009)

    Google Scholar 

  25. 25.

    M.A. Browne, S.J. Niven, T.S. Galloway, S.J. Rowland, R.C. Thompson, Curr. Biol. 23, 2388 (2013)

    Google Scholar 

  26. 26.

    R. Dris, H. Imhof, W. Sanchez, J. Gasperi, F. Galgani, B. Tassin, C. Laforsch, Environ. Chem. 12, 539 (2015)

    Google Scholar 

  27. 27.

    H.K. Imhof, J. Schmid, R. Niessner, N.P. Ivleva, C. Laforsch, Limnol. Oceanogr. Methods 10, 524 (2012)

    Google Scholar 

  28. 28.

    Y.K. Song, S.H. Hong, M. Jang, G.M. Han, M. Rani, J. Lee, W.J. Shim, Mar. Pollut. Bull. 93, 202 (2015)

    Google Scholar 

  29. 29.

    R. Lenz, K. Enders, C.A. Stedmon, D.M.A. Mackenzie, T. Gissel, MPB 100, 82 (2015)

    Google Scholar 

  30. 30.

    C. Wesch, A. Barthel, U. Braun, R. Klein, M. Paulus, Environ. Res. 148, 36 (2016)

    Google Scholar 

  31. 31.

    A.C. Wiesheu, P.M. Anger, T. Baumann, R. Niessner, N.P. Ivleva, Anal. Methods 8, 5722 (2016)

    Google Scholar 

  32. 32.

    A.S. Tagg, M. Sapp, J.P. Harrison, J.J. Ojeda, Anal. Chem. 87, 6032 (2015)

    Google Scholar 

  33. 33.

    M.G.J. Löder, M. Kuczera, S. Mintenig, C. Lorenz, G. Gerdts, Environ. Chem. 12, 563 (2015)

    Google Scholar 

  34. 34.

    M.G.J. Löder, Methodology Used for the Detection and Identification of Microplastics—A Critical Appraisal (Springer, New York, 2015)

    Google Scholar 

  35. 35.

    J.P. Harrison, J.J. Ojeda, M.E. Romero-González, Sci. Total Environ. 416, 455 (2012)

    ADS  Google Scholar 

  36. 36.

    C.E. White, R.J. Argauer, Fluorescence Analysis A Practical Approach (Marcel Dekker, New York, 1970)

    Google Scholar 

  37. 37.

    A. Charlesby, R.H. Partridge, Proc. R. Soc. A Math. Phys. Eng. Sci. 283, 329 (1965)

    Google Scholar 

  38. 38.

    Z. Osawa, H. Kuroda, J. Polym. Sci. Polym. Lett. Ed. 20, 577 (1982)

    ADS  Google Scholar 

  39. 39.

    N.S. Allen, J. Homer, J.F. McKellar, D.G.M. Wood, J. Appl. Polym. Sci. 21, 3147 (1977)

    Google Scholar 

  40. 40.

    N.S. Allen, J. Homer, J.F. McKellar, J. Appl. Polym. Sci. 21, 2261 (1977)

    Google Scholar 

  41. 41.

    M. Baibarac, I. Baltog, S. Lefrant, J.Y. Mevellec, C. Bucur, Diam. Relat. Mater. 17, 1380 (2008)

    ADS  Google Scholar 

  42. 42.

    N.S. Allen, J.F. Mckellar, G. Phillips, J. Polym. Sci. Polym. Chem. Ed. 12, 1233 (1974)

    ADS  Google Scholar 

  43. 43.

    V. Resta, G. Quarta, M. Lomascolo, L. Maruccio, L. Calcagnile, Vacuum 116, 82 (2015)

    ADS  Google Scholar 

  44. 44.

    S. Carmona-Téllez, G. Alarcón-Flores, A. Meza-Rocha, E. Zaleta-Alejandre, M. Aguilar-Futis, H. Murrieta, S.C. Falcony, Opt. Mater. (Amst). 42, 99 (2015)

    ADS  Google Scholar 

  45. 45.

    C. Jama, O. Dessaux, P. Goudmand, B. Mutel, L. Gengembre, B. Drevillon, S. Vallon, J. Grimblot, Surf. Sci. 352–354, 490 (1996)

    ADS  Google Scholar 

  46. 46.

    I. Noda, Y. Ozaki, Two-Dimensional Correlation Spectroscopy: Applications in Vibrational and Optical Spectroscopy (Wiley, New York, 2004)

    Google Scholar 

  47. 47.

    E. Smith, G. Dent, Modern Raman Spectroscopy—A Practical Approach (Wiley, Chichester, 2004)

    Google Scholar 

Download references

Funding

The stay of Jan Ornik at Philipps-Universität Marburg during the research period was financially supported by Javni sklad Republike Slovenije za razvoj kadrov in štipendije.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jan Ornik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ornik, J., Sommer, S., Gies, S. et al. Could photoluminescence spectroscopy be an alternative technique for the detection of microplastics? First experiments using a 405 nm laser for excitation. Appl. Phys. B 126, 15 (2020). https://doi.org/10.1007/s00340-019-7360-3

Download citation